Advertisement

Expressions of Solutions of Linear Partial Differential Equations Using Algebraic Operators and Algebraic Convolution

  • Liepa Bikulčienė
  • Zenonas Navickas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

An operator – algebraic algorithm of solution of linear partial differential equations suitable to be realized using computers is presented in this article; furthermore, examples of application are given as well.

Keywords

Algebraic operator Cauchy problem perfect operator algebraic convolution Appell polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weil, J.-A.: Recent algorithms for Solving second – order differential equations. In: Chyzak, F. (ed.) Algorithms Seminar, 2001-2002, pp. 43–46. INRIA (2003)Google Scholar
  2. 2.
    Navickas, Z.: Constructive solution of the Cauchy problem for a special class of partial differential equations with constant coefficients. Lithuanian Mathematical Journal 34(4), 404–414 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bikulčienė, L., Marcinkevičius, R., Navickas, Z.: Computer Realization of the Operator Method for Solving of Differential Equations. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 182–189. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Viskov, O.V.: Operator characterization for generalized Appell polynomials. Report Akad. Nauk SSSR 225(4) (mathematics), 749–752 (1975)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Liepa Bikulčienė
    • 1
  • Zenonas Navickas
    • 2
  1. 1.Department of Applied MathematicsKaunas University of TechnologyStudentuLithuania
  2. 2.Department of Applied MathematicsKaunas University of TechnologyStudentuLithuania

Personalised recommendations