Advertisement

Some Contributions of Homotopic Deviation to the Theory of Matrix Pencils

  • Françoise Chatelin
  • Morad Ahmadnasab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

Let Open image in new window be two given matrices, where rankE = r ≤ n. The matrix E is written in the form (derived from SVD) E = UV H where Open image in new window have rank r ≤ n. For 0 < r < n,  0 is an eigenvalue of E with algebraic (resp.  geometric) multiplicity m (g = n − r ≤ m).

We consider the pencil P z (t) = (A − zI) + t E, defined for Open image in new window which depends on the complex parameter Open image in new window . We analyze how its structure evolves as the parameter z varies, by means of conceptual tools borrowed from Homotopic Deviation theory [1,8]. The new feature is that, because t varies in Open image in new window , we can look at what happens in the limit when |t| → ∞. This enables us to propose a remarkable connection between the algebraic theory of Weierstrass and the Cauchy analytic theory in Open image in new window as |t| → ∞.

Keywords

Homotopic Deviation observation point frontier point communication matrix induction matrix matrix pencil Weierstrass Cauchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmadnasab, M.: Homotopic Deviation theory:  A qualitative study.  PhD thesis, Université Toulouse 1 and CERFACS, Toulouse, France, October 24 (2007)Google Scholar
  2. 2.
    Ahmadnasab, M.: An order reduction method for computing the finite eigenvalues of regular matrix pencils. Technical Report TR/PA/08/23, CERFACS, Toulouse, France (2008)Google Scholar
  3. 3.
    Ahmadnasab, M., Chaitin-Chatelin, F.: Parameter analysis of the structure of matrix pencils by Homotopic Deviation theory. In: Proceedings ICIAM 2007. Wiley, Chichester (2007) (to appear)Google Scholar
  4. 4.
    Ahmadnasab, M., Chaitin-Chatelin, F.: Matrix pencils under Homotopic Deviation theory. Technical Report TR/PA/07/108, CERFACS, Toulouse, France (2007)Google Scholar
  5. 5.
    Chaitin-Chatelin, F., van Gijzen, M.B.: Analysis of parameterized quadratic eigenvalue problems in computational acoustics with homotopic deviation theory. Numerical Linear Algebra with Applications 13, 487–512 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chaitin-Chatelin, F.: Computing beyond classical logic: SVD computation in nonassociative Dickson algebras. In: Calude, C. (ed.) Randomness and Complexity, pp. 13–23. World Scientific, SingaporeGoogle Scholar
  7. 7.
    Chatelin., F.: Eigenvalues of matrices. Wiley, Chichester (1993)zbMATHGoogle Scholar
  8. 8.
    Chatelin, F.: Homotopic Deviation in Linear algebra. In: Qualitative Computing: a computational journey into nonlinearity, vol. 7. World Scientific, Singapore (to appear, 2009)Google Scholar
  9. 9.
    Gantmacher, F.: The theory of matrices. Chelsea Publishing Company, New York (1960)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Françoise Chatelin
    • 1
  • Morad Ahmadnasab
    • 2
    • 3
  1. 1.Université Toulouse 1 and CERFACSToulouse Cedex 1France
  2. 2.Department of MathematicsUniversity of Kurdistan, Pasdaran boulevardSanandajIran
  3. 3.CERFACSToulouse Cedex 1France

Personalised recommendations