Computational Analysis of Expected Climate Change in the Carpathian Basin Using a Dynamical Climate Model

  • Judit Bartholy
  • Rita Pongrácz
  • Ildikó Pieczka
  • Péter Kardos
  • Adrienn Hunyady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)


For analyzing the possible regional climate change in the Carpathian Basin, model PRECIS has been adapted, which is the hydrostatic regional climate model HadRM3P developed at the UK Met Office, Hadley Centre, and nested in HadCM3 GCM. First, control run simulations (1961-1990) of the PRECIS model (with two different sets of boundary conditions) are analyzed. In the validation, seasonal temperature and precipitation mean values from the CRU datasets are used. According to the results, model PRECIS slightly overestimates the temperature and underestimates the precipitation. Then, model results for the periods 2071-2100 (using SRES A2 scenario) and 1961-1990 (as the reference period) are compared. The results suggest that the temperature increase expected in the Carpathian Basin may considerably exceed the global warming rate. The climate of this region is expected to become wetter in winter and drier in the other seasons.


Regional climate modeling Carpathian Basin temperature precipitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhtar, M., Ahmad, N., Booij, M.J.: The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology (2008) doi: 10.1016/j.jhydrol.2008.03.015Google Scholar
  2. 2.
    Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang, J. (ed.) Methods in Computational Physics, vol. 17, pp. 173–265. Academic Press, New York (1977)Google Scholar
  3. 3.
    Bartholy, J., Pongrácz, R., Torma, C., Hunyady, A.: Regional climate projections for the Carpathian Basin. In: Láng, I., Faragó, T., Iványi, Z. (eds.) Proceedings of the International Conference on Climate Change: Impacts and Responses in Central and Eastern European Countries, pp. 55–62. Hungarian Academy of Sciences, Hungarian Ministry of Environment and Water, Regional Environment Center for Central and Eastern Europe, Budapest (2006)Google Scholar
  4. 4.
    Cullen, M.J.P.: The unifed forecast/climate model. Meteorological Magazine 122, 81–94 (1993)Google Scholar
  5. 5.
    Dimov, I., Faragó, I., Havasi, Á., Zlatev, Z.: Different splitting techniques with application to air pollution models. Int. J. Environment and Pollution. 32(2), 174–199 (2008)CrossRefGoogle Scholar
  6. 6.
    Gibson, J.K., Kallberg, P., Uppala, S., Nomura, A., Hernandez, A., Serrano, A.: ERA description. Reading: ECMWF Reanalysis Project Report Series 1, 77 (1997)Google Scholar
  7. 7.
    Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B., Wood, R.A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16, 147–168 (2000)CrossRefGoogle Scholar
  8. 8.
    Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.): IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, p. 996. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Jones, R.G., Noguer, M., Hassell, D.C., Hudson, D., Wilson, S.S., Jenkins, G.J., Mitchell, J.F.B.: Generating high resolution climate change scenarios using PRECIS, 40p. UK Met Office Hadley Centre, Exeter (2004)Google Scholar
  10. 10.
    New, M., Hulme, M., Jones, P.: Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate 12, 829–856 (1999)CrossRefGoogle Scholar
  11. 11.
    New, M., Hulme, M., Jones, P.: Representing twentieth-century space-time climate variability. Part 2: Development of 1901-96 monthly grids of terrestrial surface climate. Journal of Climate 13, 2217–2238 (2000)Google Scholar
  12. 12.
    Rupa Kumar, K., Sahai, A.K., Krishna Kumar, K., Patwardhan, S.K., Mishra, P.K., Revadekar, J.V., Kamala, K., Pant, G.B.: High-resolution climate change scenarios for India for the 21st century. Current Science 90, 334–345 (2006)Google Scholar
  13. 13.
    Mesinger, F.: Horizontal Advection Schemes of a Staggered Grid - An Enstrophy and Energy-Conserving Model. Monthly Weather Review 109, 467–478 (1981)CrossRefGoogle Scholar
  14. 14.
    Simmons, A.J., Burridge, D.M.: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Monthly Weather Review 109, 758–766 (1981)CrossRefGoogle Scholar
  15. 15.
    Trenberth, K.E. (ed.): Climate System Modeling, Cambridge University Press, 788p. Cambridge University Press, Cambridge (1992)Google Scholar
  16. 16.
    Wilson, S., Hassell, D., Hein, D., Jones, R., Taylor, R.: Installing and using the Hadley Centre regional climate modelling system, PRECIS. Version 1.5.1, 157p. UK Met Office Hadley Centre, Exeter (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Judit Bartholy
    • 1
  • Rita Pongrácz
    • 1
  • Ildikó Pieczka
    • 1
  • Péter Kardos
    • 1
  • Adrienn Hunyady
    • 1
  1. 1.Department of MeteorologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations