Advertisement

The Numerical Spherically Symmetric Modeling of Deep-Seated Geodynamics

  • A. V. Vyatkin
  • V. V. Shaidurov
  • G. I. Shchepanovskaya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

In this paper a computer model is proposed which allows one to consider geodynamics processes of the Earth’s expansion, contraction, heating and cooling. Geosphere dynamics is studied in the framework of a viscous heat-conducting compressible medium where medium density and viscosity vary with time and space. This model includes the Earth’s crust, mantle, and the core as well.

Keywords

Froude Number Spherical Coordinate System Geodynamic Process Geosphere Dynamic Siberian State Aerospace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jeffreys, H.: The Earth: Its Origin, History and Physical Constitution. Cambridge University Press, Cambridge (1976)zbMATHGoogle Scholar
  2. 2.
    Dobretsov, N.L., Kirdyashkin, A.G., Kirdyashkin, A.A.: Deep-seated Geodynamics, ”GEO” branch. SB RAS Publisher, Novosibirsk (2001) (in Russian)Google Scholar
  3. 3.
    Shaidurov, V.V., Shchepanovskaya, G.I.: The mathematical and numerical modeling of the nonstationary propagation of a pulce of high-power energy in a viscous heat conducting gas. Part 1. Mathematical formulation of the problem. Registered in VINITI 24.10.03, 1860–B2003. Krasnoyarsk: ICM SB RAS, 50 p. (2003) (in Russian)Google Scholar
  4. 4.
    Karepova, E.D., Malyshev, A.V., Shaidurov, V.V., Shchepanovskaya, G.I.: The finite element method for the navier-stokes equations for a viscous heat conducting gas. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 56–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Karepova, E.D., Malyshev, A.V., Shaidurov, V.V., Shchepanovskaya, G.I.: The parallel realization of the finite element method for the Navier-Stokes equations for a viscous heat conducting gas. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 91, pp. 41–54. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Malyshev, V.A., Shaidurov, V.V., Shchepanovskaya, G.I.: The mathematical and numerical modeling of a supersonic interaction of heat pulses with a multiprocessor computational system. Krasn. State Univ. Bulletin. 4, 109–116 (2006) (in Russian)Google Scholar
  7. 7.
    Ushakova, O.A., Shaidurov, V.V., Shchepanovskaya, G.I.: The finite element method for the Navier-Stokes equations in spherical coordinates. Krasn. State Univ. Bulletin. 4, 151–156 (2006)Google Scholar
  8. 8.
    Shaidurov, V.V., Shchepanovskaya, G.I.: A gas dynamic model of the inner structure of the Earth II Conference in honour of Reshetnev. In: Transactions of the XI-th international scient. conference, pp. 268–269. Siberian state aerospace university, Krasnoyarsk (2007) (in Russian)Google Scholar
  9. 9.
    Samarskii, A.A., Nikolaev, E.S.: Methods for the Solution of Grid Equations. Moscow, Nauka (1978) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. V. Vyatkin
    • 1
  • V. V. Shaidurov
    • 1
  • G. I. Shchepanovskaya
    • 1
  1. 1.Institute of Computational Modeling SB RASKrasnoyarskRussia

Personalised recommendations