Skip to main content

Model Based Anytime Soft Computing Approaches in Engineering Applications

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 196))

Abstract

Nowadays practical solutions of engineering problems involve model-integrated computing. Model based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Due to their flexibility, robustness, and easy interpretability, the application of soft computing, in particular fuzzy and neural network based models, may have an exceptional role at many fields, especially in cases where the problem to be solved is highly nonlinear or when only partial, uncertain and/or inaccurate data is available. Nevertheless, ever so advantageous their usage can be, it is still limited by their exponentially increasing computational complexity. Although, a possible solution can be, if we combine soft computing and anytime techniques, because the anytime mode of operation is able to adaptively cope with the available, usually imperfect or even missing information, the dynamically changing, possibly insufficient amount of resources and reaction time.

In this chapter the applicability of (Higher Order) Singular Value Decomposition based anytime Soft Computational models is analyzed in dynamically changing, complex, time-critical systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billings, S.A.: Identification of Nonlinear Systems – A Survey. IEE Proc. 127(6), 272–284 (1980)

    MathSciNet  Google Scholar 

  2. Klir, G.J., Folger, T.A.: Fuzzy Sets. Uncertainty, and Information. Prentice-Hall International Inc., Englewood Cliffs (1988)

    MATH  Google Scholar 

  3. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall International Inc., New Jersey (1994)

    Google Scholar 

  4. Babuska, R., Sousa, J., Verbruggen, H.B.: Model-Based Design of Fuzzy Control Systems. In: Proc. of the Third European Congress on Intelligent Techniques and Soft Computing EUFIT 1995, Aachen, Germany, pp. 837–841 (1995)

    Google Scholar 

  5. Chen, S., Billing, S.A., Luo, W.: Orthogonal Least Squares Methods and Their Application to Non-Linear System Identification. Int. Journal of Control 50(5), 1873–1896 (1989)

    Article  MATH  Google Scholar 

  6. Fuller, R.: Neural Fuzzy Systems. Lecture Notes, Abo Akademi, Helsinki, Finland (1997)

    Google Scholar 

  7. Rauma, T., Kurki, M., Alahuhta, P.: An Approach of Using Fuzzy Control in Fault Diagnostics. In: European Conf. on Fuzzy and Intelligent Systems, EUFIT 1996, Aachen, Germany (1996)

    Google Scholar 

  8. Russo, F.: Recent Advances in Fuzzy Techniques for Image Enhancement. IEEE Trans. on Instrumentation and Measurement 47(6), 1428–1434 (1998)

    Article  Google Scholar 

  9. Várkonyi-Kóczy, A.R., Dobrowiecki, T.P.: Imprecise Methods in Measurement. In: Proc. of the 1997 IEEE Instrumentation & Measurement Technology Conference, IMTC 1997, Ottawa, Canada, May 19-21, pp. 790–795 (1997)

    Google Scholar 

  10. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  11. Lei, K.F., Yam, Y., Baranyi, P.: Neuro-Fuzzy Based Experiments on a Shape Memory Allow Positioning System. In: American Control Conference, Arlington, USA, pp. 3861–3865 (2001)

    Google Scholar 

  12. Bhatnagar, R.K., Kanal, L.N.: Handling uncertain information: a review of numeric and non-numeric methods. In: Uncertainty in Artificial Intelligence, pp. 3–26. Elsevier Science Publishers, Amsterdam (1986)

    Google Scholar 

  13. Takács, O., Várkonyi-Kóczy, A.R.: Some Aspects of Representing Uncertainty in Nonlinear Systems. In: Proc. of INTCOM 1998, Symposium on Intelligent Systems in Control and Measurement, Hungary, Miskolc, pp. 168–176 (1998)

    Google Scholar 

  14. Várkonyi-Kóczy, A.R., Kovácsházy, T.: Anytime Algorithms in Embedded Signal Processing Systems. In: Proc. of the IX. European Signal Processing Conference, EUSIPCO 1998, Rhodes, Greece, vol. 1, pp. 169–172 (1998)

    Google Scholar 

  15. Baron, C., Geffroy, J.-C., Motet, G. (eds.): Embedded System Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  16. Zilberstein, S.: Using Anytime Algorithms in Intelligent systems. AI Magazine 17(3), 73–83 (1996)

    Google Scholar 

  17. Várkonyi-Kóczy, A.R., Ruano, A., Baranyi, P., Takács, O.: Anytime Information Processing Based on Fuzzy and Neural Network Models. In: Proc. of the 2001 IEEE Instrumentation and Measurement Technology Conference, IMTC 2001, Budapest, Hungary, pp. 1247–1252 (2001)

    Google Scholar 

  18. Várkonyi-Kóczy, A.R., Kovácsházy, T., Takács, O., Benedecsik, Cs.: Anytime Algorithms in Intelligent Measurement and Control. In: Proc. of the 2000 World Automation Congress, WAC 2000, Maui, USA, p. ISIAC-156.1-6 (2000) CD-ROM

    Google Scholar 

  19. Simon, Gy., Kovácsházy, T., Péceli, G.: Transient Management in Reconfigurable Control Systems. Technical Report, Budapest University of Technology and Economics Press (2002)

    Google Scholar 

  20. Péceli, G., Kovácsházy, T.: Transients in Reconfigurable Systems. In: Proc. Of the 1998 IEEE Instrumen¬tation & Measurement Technology Conf., IMTC 1998, St. Paul, USA, pp. 919–922 (1998)

    Google Scholar 

  21. Dorf, R.C.: Modern Control Systems. Addison-Wesley Publ. Comp., USA (1987)

    Google Scholar 

  22. Yam, Y.: Fuzzy Approximation via Grid Sampling and Singular Value Decomposition. IEEE Trans. on Systems, Men, and Cybernetics 27(6), 933–951 (1997)

    Article  MathSciNet  Google Scholar 

  23. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans. on Systems, Men, and Cybernetics 15, 116–132 (1985)

    MATH  Google Scholar 

  24. Yam, Y., Baranyi, P., Yang, C.T.: Reduction of Fuzzy Rule Base Via Singular Value Decomposition. IEEE Trans. on Fuzzy Systems 7(2), 120–132 (1999)

    Article  Google Scholar 

  25. Baranyi, P., Várkonyi-Kóczy, A.R., Yam, Y., Michelberger, P.: HOSVD Based Computational Complexity Reduction of TS Fuzzy Models. In: Proc. of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, IFSA / NAFIPS 2001, Vancouver, Canada, pp. 2482–2485 (2001)

    Google Scholar 

  26. Larsen, P.M.: Industrial Application of Fuzzy Logic Control. Int. Journal Man-Machine Studies 12, 3–10 (1980)

    Article  Google Scholar 

  27. Takács, O., Várkonyi-Kóczy, A.R., Várlaki, P.: Non-exact Complexity Reduction of Generalized Neuro-Fuzzy Networks. In: Proc. of the 10th IEEE Int. Conference on Fuzzy Systems, FUZZ-IEEE 2001, Melbourne, Australia, pp. 980–983 (2001)

    Google Scholar 

  28. Baranyi, P., Yang, Y.: Singular value-based approximation with non-singleton support. In: Proc. of the Seventh Int. IFSA World Congress, Prague, pp. 127–132 (1997)

    Google Scholar 

  29. Baranyi, P., Yam, Y., Yang, C.T., Várkonyi-Kóczy, A.R.: Complexity Reduction of a Rational General Form. In: Proc. of the IEEE Int. Conference on Fuzzy Systems, FUZZ-IEEE 1999, Seoul, Korea, pp. 366–371 (1999)

    Google Scholar 

  30. Baranyi, P., Yam, Y., Yang, C.T., Várkonyi-Kóczy, A.R.: Practical Extension of the SVD Based Reduction Technique for Extremely Large Fuzzy Rule Bases. In: Proc. of the IEEE Int. Workshop on Intelligent Signal Processing, WISP 1999, Budapest, Hungary, pp. 29–33 (1999)

    Google Scholar 

  31. Yen, J., Wang, L.: Simplifying Fuzzy Rule-based Models Using Orthogonal Transformation Methods. IEEE Transactions on Systems, Man, and Cybernetics 29B(1), 13–24 (1999)

    Google Scholar 

  32. Chen, J., Patton, R.J.: Robust Model Based Fault Diagnosis For Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  33. Wang, O.H., Tanaka, K., Griffin, M.F.P.: Parallel distributed compensation of non-linear systems by Takagi and Sugeno fuzzy models. In: Proc. FUZZ-IEEE/FES 1995, pp. 531–538 (1995)

    Google Scholar 

  34. Tikk, D.: On nowhere denseness of certain fuzzy controllers containing pre-restricted number of rules, vol. 16. Tatra Mountain Math. Publ. (1999)

    Google Scholar 

  35. Baranyi, P., Yam, Y., Várkonyi-Kóczy, A.R., Patton, R.J., Michelberger, P., Sugiyama, M.: SVD Based Complexity Reduction to TS Fuzzy Models. IEEE Trans. on Industrial Electronics 49(2), 433–443 (2002)

    Article  Google Scholar 

  36. Baranyi, P., Lei, K., Yam, Y.: Complexity reduction of singleton based neuro-fuzzy algorithm. In: Proc. of the 2000 IEEE International Conference on Systems, Man, and Cybernetics, Nashville, USA, vol. 4, pp. 2503–2508 (2000)

    Google Scholar 

  37. Takács, O., Nagy, I.: Error-bound of the SVD Based Neural Networks. In: Proc. of the IFAC Symp. on Artificial Intelligence in Real-Time Control, AIRTC 2000, Budapest, Hungary, pp. 139–144 (2000)

    Google Scholar 

  38. Takács, O., Várkonyi-Kóczy, A.R.: Error-Bound for the Non-Exact SVD-Based Reduction of the Generalized Type Hybrid Neural Networks with Non-Singleton Consequents. In: Proc. of the 2001 IEEE Instrumentation and Measurement Technology Conference, IMTC/2001, Budapest, Hungary, pp. 1607–1613 (2001)

    Google Scholar 

  39. Takács, O., Várkonyi-Kóczy, A.R.: Iterative-type Evaluation of PSGS Fuzzy Systems for Anytime Use. IEEE Trans. on Instrumentation and Measurement 54(1), 391–397 (2005)

    Article  Google Scholar 

  40. Zilberstein, S.: Operational Rationality through Compilation of Anytime Algorithms, PhD Thesis (1993)

    Google Scholar 

  41. Zilberstein, S., Charpillet, F., Chassaing, P.: Optimal Sequencing of Contract Algorithms. Annals of Mathematics and Artificial Intelligence (2002)

    Google Scholar 

  42. Samu, G., Várkonyi-Kóczy, A.R.: Intelligent Monitor for Anytime Systems. In: Proc. of the IEEE Int. Symposium on Intelligent Signal Processing, WISP 2003, Budapest, Hungary, September 4-6, pp. 277–282 (2003)

    Google Scholar 

  43. Várkonyi-Kóczy, A.R., Samu, G.: Anytime System Scheduler for Insufficient Resource Availability. International Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) 8(5), 488–494 (2004)

    Google Scholar 

  44. Klement, E.P., Kóczy, L.T., Moser, B.: Are fuzzy systems universal approximators? Int. Jour. General Systems 28(2-3), 259–282 (1999)

    Article  MATH  Google Scholar 

  45. Baranyi, P., Várkonyi-Kóczy, A.R.: Adaptation of SVD Based Fuzzy Reduction via Minimal Expansion. IEEE Trans. on Instrumentation and Measurement 51(2), 222–226 (2002)

    Article  Google Scholar 

  46. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis. John Wiley & Sons, Inc., New York (2001)

    Book  Google Scholar 

  47. Tanaka, K., Taniguchi, T., Wang, H.O.: Robust and Optimal Fuzzy Control: A Linear Matrix Inequality Approach. In: Proc. of the 1999 IFAC World Congress, Beijing, pp. 213–218 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Várkonyi-Kóczy, A.R. (2009). Model Based Anytime Soft Computing Approaches in Engineering Applications. In: Balas, V.E., Fodor, J., Várkonyi-Kóczy, A.R. (eds) Soft Computing Based Modeling in Intelligent Systems. Studies in Computational Intelligence, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00448-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00448-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00447-6

  • Online ISBN: 978-3-642-00448-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics