Advertisement

Ant Colony Optimization Algorithms for Shortest Path Problems

  • Sudha Rani Kolavali
  • Shalabh Bhatnagar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5425)

Abstract

We propose four variants of a recently proposed multi-timescale algorithm in [1] for ant colony optimization and study their application on a multi-stage shortest path problem. We study the performance of the various algorithms in this framework. We observe that one of the variants consistently outperforms the algorithm in [1].

Keywords

Ant colony optimization stochastic approximation multi-stage shortest path problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borkar, V.S., Das, D.: A novel ACO algorithm for optimization via reinforcement and initial bias. Swarm Intelligence, special issue on Ant Colony Optimization (to appear, 2008)Google Scholar
  2. 2.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  3. 3.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. TCS: Theoretical Computer Science 345 (2005)Google Scholar
  4. 4.
    Gutjahr, W.J.: A graph-based ant system and its convergence. Future Generation Comp. Syst. 16(8), 873–888 (2000)CrossRefGoogle Scholar
  5. 5.
    Stutzle, T., Dorigo, M.: A short convergence proof for a class of ant colony optimization algorithms. IEEE-EC 6, 358–365 (2002)Google Scholar
  6. 6.
    Merkle, D., Middendorf, M.: Modeling the dynamics of ant colony optimization. Evolutionary Computation 10(3), 235–262 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Blum, C., Dorigo, M.: Search bias in ant colony optimization: on the role of competition-balanced systems. IEEE Trans. Evolutionary Computation 9(2), 159–174 (2005)CrossRefGoogle Scholar
  8. 8.
    Meuleau, N., Dorigo, M.: Ant colony optimization and stochastic gradient descent. Artificial Life 8(2), 103–121 (2002)CrossRefGoogle Scholar
  9. 9.
    Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: AntHocNet: An ant-based hybrid routing algorithm for mobile ad hoc networks. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 461–470. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ghassemlooy, Z., Tekiner, F., Srikanth, T.R.: Comparison of the q-routing and shortest path routing algorithms. In: Proc. of the 5th Annual Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sudha Rani Kolavali
    • 1
  • Shalabh Bhatnagar
    • 1
  1. 1.Indian Institute of ScienceComputer Science and AutomationBangaloreIndia

Personalised recommendations