A Heuristic Approach to the Passive Detection of Reno-Like TCP Flows

  • Miguel Rodríguez-Pérez
  • Manuel Fernández-Veiga
  • Sergio Herrería-Alonso
  • Cándido López-García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5425)


Traditional TCP-Reno like congestion control protocols exhibit poor performance when deployed in fast or very large network paths. Delay based congestion avoidance mechanisms (DCA), like FAST-TCP, get much higher performance, in the same circumstances. However, when mixed with TCP-Reno or alike traffic they are unable to attain their fair share of bandwidth. In this paper we present a new mechanism that can indirectly detect the present of non DCA-friendly traffic that can be used by new DCA algorithms to auto-tune themselves with more aggressive parameters to achieve their fair share.


Congestion control Delay-based FAST-TCP TCP-Vegas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Floyd, S.: Highspeed TCP for large congestion windows. RFC 3649 (December 2003)Google Scholar
  2. 2.
    Rhee, I., Xu, L.: CUBIC: A new TCP-friendly high-speed TCP variant. In: PFLDNet 2005 (February 2005)Google Scholar
  3. 3.
    Jain, R.: A delay-based approach for congestion avoidance in interconnected heterogeneous computer networks. SIGCOMM Comput. Commun. Rev. 19(5), 56–71 (1989)CrossRefGoogle Scholar
  4. 4.
    Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP Vegas: New techniques for congestion detection and avoidance. SIGCOMM Comput. Commun. Rev. 24(4), 24–35 (1994)CrossRefGoogle Scholar
  5. 5.
    Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006)CrossRefGoogle Scholar
  6. 6.
    Martin, J., Nilsson, A., Rhee, I.: Delay-based congestion avoidance for TCP. IEEE/ACM Trans. Netw. 11(3), 356–369 (2003)CrossRefGoogle Scholar
  7. 7.
    Tang, A., Wei, D., Low, S.H.: Heterogeneous congestion control: Efficiency, fairness and design. In: IEEE International Conference on Network Protocols, Santa Barbara, CA, USA, 127–136 (November 2006)Google Scholar
  8. 8.
    King, R., Baraniuk, R., Riedi, R.: TCP-Africa: An adaptive and fair rapid increase rule for scalable TCP. In: Proceedings of the IEEE INFOCOM, Miami, FL, USA, vol. 3, pp. 1838–1848 (March 2005)Google Scholar
  9. 9.
    Wang, J., Wei, D.X., Low, H.S.: Modelling and stability of FAST TCP. In: Proceedings of the IEEE INFOCOM, April 2005, vol. 2, pp. 938–948, Pasadena, CA, USA (2005)Google Scholar
  10. 10.
    Choi, J.Y., Koo, K., Lee, J.S., Low, S.H.: Global stability of FAST TCP in single-link single-source network. In: 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 1837–1841 (2005)Google Scholar
  11. 11.
    Choi, J.Y., Koo, K., Wei, D.X., Lee, J.S., Low, S.H.: Global exponential stability of FAST TCP. In: 45th IEEE Conference on Decision and Control, San Diego, CA, USA, December 2006, pp. 639–643 (2006)Google Scholar
  12. 12.
    Tan, L., Zhang, W., Yuan, C.: On parameter tuning for FAST TCP. IEEE Commun. Lett. 11(5), 458–460 (2007)CrossRefGoogle Scholar
  13. 13.
    Mo, J., La, R.J., Anantharam, V., Walrand, J.: Analysis and comparison of TCP Reno and Vegas. In: Proceedings of the IEEE INFOCOM, New York, NY, USA, March 1999, vol. 3, pp. 1556–1563 (1999)Google Scholar
  14. 14.
    NS: ns Network Simulator (October 2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Miguel Rodríguez-Pérez
    • 1
  • Manuel Fernández-Veiga
    • 1
  • Sergio Herrería-Alonso
    • 1
  • Cándido López-García
    • 1
  1. 1.E.T.S.E. TelecomunicaciónVigoSpain

Personalised recommendations