ROS in the Legume-Rhizobium Symbiosis

  • Karine Mandon
  • Nicolas Pauly
  • Alexandre Boscari
  • Renaud Brouquisse
  • Pierre Frendo
  • Bruce Demple
  • Alain PuppoEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM)


Plants appear to generate reactive oxygen species (ROS) as signaling molecules to control various fundamental processes. With this background, this review aims to highlight the involvement of ROS, and their possible interactions with nitric oxide (NO) and glutathione (GSH) in the symbiosis between rhizobia and leguminous plants. This compatible interaction, which is very important for sustainable agriculture, leads to the formation of a novel organ capable of fixing atmospheric nitrogen. ROS are involved in the early steps of the symbiotic interaction: their presence is essential for the development of optimal symbiosis and points to a signaling role for ROS during the symbiotic process. ROS may also regulate nodule function by interacting with NO.


Reactive Oxygen Species Nitric Oxide Nodule Formation Symbiotic Interaction Infection Thread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alesandrini F, Mathis R, Van de Sype G, Hérouart D, Puppo A (2003) Possible roles of a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 158:131–138CrossRefGoogle Scholar
  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  3. Ardissone S, Frendo P, Laurenti E, Jantschko W, Obinger C, Puppo A, Ferrari RP (2004) Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti. Biochemistry 43:12692–12699.PubMedCrossRefGoogle Scholar
  4. Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19:970–975PubMedCrossRefGoogle Scholar
  5. Becana M, Klucas RV (1992) Transition metals in legume root nodules. Iron dependant free radical production increases during nodule senescence. Proc Natl Acad Sci USA 87:7295–7299CrossRefGoogle Scholar
  6. Bobik C, Meilhoc E, Batut J (2006) FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti. J Bacteriol 188:4890–4902PubMedCrossRefGoogle Scholar
  7. Bueno P, Soto MJ, Rodriguez-Rosales MP, Sanjuan J, Olivares J, Donaire JP (2001) Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during early stages of Rhizobium legume symbiosis. New Phytol 152:91–96CrossRefGoogle Scholar
  8. Castro-Sowinski S, Matan O, Bonafede P, Okon Y (2007) A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation. Mol Plant Microbe Interact 20:986–993PubMedCrossRefGoogle Scholar
  9. Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512PubMedCrossRefGoogle Scholar
  10. Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3:research0025PubMedCrossRefGoogle Scholar
  11. Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905PubMedCrossRefGoogle Scholar
  12. D’Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794PubMedCrossRefGoogle Scholar
  13. Dalton DA, Langeberg L, Treneman NC (1993) Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 84:365–370CrossRefGoogle Scholar
  14. Dalton DA, Post CJ, Langeberg L (1991) Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascrobate, and associated enzymes in soybean root nodules. Plant Physiol 96:812–818PubMedCrossRefGoogle Scholar
  15. David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D (1988) Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671–683PubMedCrossRefGoogle Scholar
  16. Den Herder J, Lievens S, Rombauts S, Holsters M, Goormachtig S (2007) A symbiotic plant peroxidase involved in bacterial invasion of the tropical legume Sesbania rostrata. Plant Physiol 144:717–727PubMedCrossRefGoogle Scholar
  17. Dombrecht B, Heusdens C, Beullens S, Verreth C, Mulkers E, Proost P, Vanderleyden J, Michiels J (2005) Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Molecular microbiology 55:1207–1221PubMedCrossRefGoogle Scholar
  18. El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w]). Plant Physiol 136:3159–3176PubMedCrossRefGoogle Scholar
  19. Escurado PR, Minchin FR, Gogoncena Y, Iturbe-Ormaetxe I, Klucas RV, Becana M (1996) Involved of activated oxygen in nitrate induced senescence of pea root nodules. Plant Physiol 110:1187–1195Google Scholar
  20. Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, de Felipe M, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79CrossRefGoogle Scholar
  21. Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M (2008) Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Mol Plant Microbe Interact 21:781–790PubMedCrossRefGoogle Scholar
  22. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446PubMedCrossRefGoogle Scholar
  23. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCrossRefGoogle Scholar
  24. Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A (1999) Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J 17:215–219CrossRefGoogle Scholar
  25. Frendo P, Harrison J, Norman C, Hernandez Jimenez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant Microbe Interact 18:254–259PubMedCrossRefGoogle Scholar
  26. Frendo P, Jimenez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Hérouart D, Puppo A (2001) A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol 126:1706–1715PubMedCrossRefGoogle Scholar
  27. Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M (1997) N2 fixation, carbon metabolism and oxidative damage in nodules of dark stressed Common Bean plants. Plant Physiol 113:1193–1201PubMedGoogle Scholar
  28. Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515PubMedCrossRefGoogle Scholar
  29. Greenberg JT, Demple B (1986) Glutathione in Escherichia coli is dispensable for resistance to H2O2 and gamma radiation. J Bacteriol 168:1026–1029PubMedGoogle Scholar
  30. Groten K, Dutilleul C, van Heerden PD, Vanacker H, Bernard S, Finkemeier I, Dietz KJ, Foyer CH (2006) Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett 580:1269–1276PubMedCrossRefGoogle Scholar
  31. Groten K, Vanacker H, Dutilleul C, Bastian F, Bernard S, Carzaniga R, Foyer CH (2005) The roles of redox processes in pea nodule development and senescence. Plant Cell Environ 28:1293–1304CrossRefGoogle Scholar
  32. Gucciardo S, Wisniewski JP, Brewin NJ, Bornemann S (2007) A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. J Exp Bot 58:1161–1171PubMedCrossRefGoogle Scholar
  33. Gunther C, Schlereth A, Udvardi M, Ott T (2007) Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicus. Mol Plant Microbe Interact 20:1596–1603PubMedCrossRefGoogle Scholar
  34. Gyorgyey J, Vaubert D, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant Microbe Interact 13:62–71PubMedCrossRefGoogle Scholar
  35. Harrison J, Jamet A, Muglia CI, Van de Sype G, Aguilar OM, Puppo A, Frendo P (2005) Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187:168–174PubMedCrossRefGoogle Scholar
  36. Herold S, Puppo A (2005) Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J Biol Inorg Chem 10:935–945PubMedCrossRefGoogle Scholar
  37. Hérouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo A (2002) Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume – Rhizobium symbiosis. Plant Physiol Biochem 40:619–624CrossRefGoogle Scholar
  38. Hérouart D, Sigaud S, Moreau S, Frendo P, Touati D, Puppo A (1996) Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. J Bacteriol 178:6802–6809.PubMedGoogle Scholar
  39. Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322PubMedCrossRefGoogle Scholar
  40. Jamet A, Mandon K, Puppo A, Herouart D (2007) H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol 189:8741–8745PubMedCrossRefGoogle Scholar
  41. Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D (2003) Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact 16:217–225PubMedCrossRefGoogle Scholar
  42. Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351PubMedCrossRefGoogle Scholar
  43. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930PubMedCrossRefGoogle Scholar
  44. Loferer H, Bott M, Hennecke H (1993) Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis. EMBO J 12:3373–3383PubMedGoogle Scholar
  45. Lohar DP, Haridas S, Gantt JS, VandenBosch KA (2007) A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis. New Phytol 173:39–49PubMedCrossRefGoogle Scholar
  46. Long SR (2001) Genes and signals in the Rhizobium-legume symbiosis. Plant Physiol 125:69–72PubMedCrossRefGoogle Scholar
  47. Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292PubMedCrossRefGoogle Scholar
  48. Mannick JB, Schonhoff CM (2002) Nitrosylation: the next phosphorylation? Arch Biochem Biophys 408:1–6PubMedCrossRefGoogle Scholar
  49. Matamoros MA, Baird LM, Escuredo PR, Dalton DA, Minchin FR, Iturbe-Ormaetxe I, Rubio MC, Moran JF, Gordon AJ, Becana M (1999a) Stress induced legume root nodule senescence. Physiological, biochemical and structural alterations. Plant Physiol 121:97–112CrossRefGoogle Scholar
  50. Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, Becana M (2003a) Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Mol Plant Microbe Interact 16:1039–1046CrossRefGoogle Scholar
  51. Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003b) Biochemistry and molecular biology of antioxidants in the rhizobia–legume symbiosis. Plant Physiol 133:499–509CrossRefGoogle Scholar
  52. Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999b) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888CrossRefGoogle Scholar
  53. Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Direct detection of radicals in intact soybean nodules: presence of nitric oxide leghemoglobin complexes. Free Rad Bio Med 24:1242–1249CrossRefGoogle Scholar
  54. McGongile B, Keeler SJ, Lau SMC, Koeppe MJ, O’Keefe DP (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124:1105–1120CrossRefGoogle Scholar
  55. Mesa S, Bedmar EJ, Chanfon A, Hennecke H, Fischer HM (2003) Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade. J Bacteriol 185:3978–3982PubMedCrossRefGoogle Scholar
  56. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  57. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247PubMedCrossRefGoogle Scholar
  58. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  59. Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedCrossRefGoogle Scholar
  60. Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Baudouin E, Herouart D, Frendo P, Puppo A (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume–Rhizobium symbiosis. J Exp Bot 57:1769–1776PubMedCrossRefGoogle Scholar
  61. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734PubMedCrossRefGoogle Scholar
  62. Peleg-Grossman S, Volpin H, Levine A (2007) Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J Exp Bot 58:1637–1649PubMedCrossRefGoogle Scholar
  63. Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiot. Science 275:527–530PubMedCrossRefGoogle Scholar
  64. Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21PubMedCrossRefGoogle Scholar
  65. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701PubMedCrossRefGoogle Scholar
  66. Puppo A, Herrada G, Rigaud J (1991) Lipid peroxidation in peribacteroid membranes from french-bean nodules. Plant Physiol 96:826–830PubMedCrossRefGoogle Scholar
  67. Ramu SK, Peng HM, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant Microbe Interact 15:522–528PubMedCrossRefGoogle Scholar
  68. Riccillo PM, Muglia CI, de Bruijn FJ, Roe AJ, Booth IR, Aguilar OM (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753PubMedCrossRefGoogle Scholar
  69. Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant Microbe Interact 17:1294–1305PubMedCrossRefGoogle Scholar
  70. Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inzé D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750PubMedCrossRefGoogle Scholar
  71. Santos R, Hérouart D, Puppo A, Touati D (2000) Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis. Mol Microbiol 38:750–759PubMedCrossRefGoogle Scholar
  72. Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact 14:86–89PubMedCrossRefGoogle Scholar
  73. Seaver LC, Imlay JA (2001) Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183:7182–7189PubMedCrossRefGoogle Scholar
  74. Shaw SL, Long SR (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol 132:2196–2204PubMedCrossRefGoogle Scholar
  75. Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic Rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107PubMedCrossRefGoogle Scholar
  76. Tesfaye M, Samac DA, Vance CP (2006) Insights into symbiotic nitrogen fixation in Medicago truncatula. Mol Plant Microbe Interact 19:330–341PubMedCrossRefGoogle Scholar
  77. Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581:3598–3607PubMedCrossRefGoogle Scholar
  78. Vargas C, Wu G, Davies AE, Downie JA (1994) Identification of a gene encoding a thioredoxin-like product necessary for cytochrome c biosynthesis and symbiotic nitrogen fixation in Rhizobium leguminosarum. J Bacteriol 176:4117–4123PubMedGoogle Scholar
  79. Vasse J, De Billy F, Truchet G (1993) Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566CrossRefGoogle Scholar
  80. Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110PubMedCrossRefGoogle Scholar
  81. Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236PubMedCrossRefGoogle Scholar
  82. Wisniewski JP, Rathbun EA, Knox JP, Brewin NJ (2000) Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Mol Plant Microbe Interact 13:413–420PubMedCrossRefGoogle Scholar
  83. Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inze D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141:404–411PubMedCrossRefGoogle Scholar
  84. Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karine Mandon
    • 1
  • Nicolas Pauly
    • 1
  • Alexandre Boscari
    • 1
  • Renaud Brouquisse
    • 1
  • Pierre Frendo
    • 1
  • Bruce Demple
    • 1
  • Alain Puppo
    • 2
    Email author
  1. 1.Interactions Biotiques et Santé VégétaleUMR INRA 1301/Université de Nice-Sophia Antipolis/CNRS 6243Sophia Antipolis CedexFrance
  2. 2. B. Demple Department of Genetics and Complex Diseases,Harvard School of Public HealthBostonUSA

Personalised recommendations