Peroxisomes as a Cellular Source of ROS Signal Molecules

  • Luis A. del  RíoEmail author
  • Luisa M. Sandalio
  • Francisco J. Corpas
  • María C. Romero-Puertas
  • José M. Palma
Part of the Signaling and Communication in Plants book series (SIGCOMM)


Peroxisomes are subcellular organelles with an essentially oxidative type of metabolism and devoid of DNA, and are probably the major sites of intracellular H2O2 production. Like mitochondria and chloroplasts, peroxisomes also produce superoxide radicals (O2) and there are, at least, two sites of superoxide generation: one in the organelle matrix, the generating system being xanthine oxidase, and another site in the peroxisomal membranes dependent on NAD(P)H. In peroxisomal membranes, three integral polypeptides (PMPs) have been shown to generate O2 radicals. Besides catalase, several antioxidative enzymes have been demonstrated in plant peroxisomes, including different superoxide dismutases, the enzymes of the ascorbate–glutathione cycle plus ascorbate and glutathione, and three NADP-dependent dehydrogenases. The presence of nitric oxide synthase (NOS) activity and its reaction product, nitric oxide (NO), has been demonstrated in plant peroxisomes. These organelles have a ROS-mediated cellular function in leaf senescence and in stress situations induced by xenobiotics and heavy metals, and can have an important role in plant cells as a source of signal molecules like O2 radicals, H2O2, NO and S-nitrosoglutathione (GSNO).


Nitric Oxide Xanthine Oxidase Glutathione Cycle Peroxisomal Membrane Monodehydroascorbate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by research projects from the Ministry of Education and Science (grants PB98-0493-01 and BFI 2002-04440-01), Spain, Research Training Network grants from the European Commission (contracts CHRX-CT94-0605 and HPRN-CT-2000-00094) and Junta de Andalucía (Group BIO-0192 and project P06-CVI-01820).


  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615PubMedCrossRefGoogle Scholar
  2. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341PubMedCrossRefGoogle Scholar
  3. Arai Y, Hayashi M, Nishimura M (2008) Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant Cell Physiol 49:526–539PubMedCrossRefGoogle Scholar
  4. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedCrossRefGoogle Scholar
  5. Baker A, Graham I (2002) Plant peroxisomes. Biochemistry, cell biology and biotechnological applications. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  6. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733PubMedCrossRefGoogle Scholar
  7. Bolwell GP (1999) Role of reactive oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2:287–294PubMedCrossRefGoogle Scholar
  8. Bowditch MY, Donaldson RP (1990) Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol 94:531–537PubMedCrossRefGoogle Scholar
  9. Bueno P, Varela J, Giménez-Gallego G, del Río LA (1995) Peroxisomal copper, zinc superoxide dismutase: characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108:1151–1160PubMedCrossRefGoogle Scholar
  10. Castillo MC, Sandalio LM, del Río LA, León J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31:492–505PubMedCrossRefGoogle Scholar
  11. Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact 13:1380–1384PubMedCrossRefGoogle Scholar
  12. Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928PubMedCrossRefGoogle Scholar
  13. Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150PubMedCrossRefGoogle Scholar
  14. Corpas FJ, Pedrajas JR, Sandalio LM, León AM, Carreras A, Palma JM, Valderrama R, del Río LA, Barroso JB (2003) Localization of peroxiredoxin in peroxisomes from pea leaves. Free Radic Res 37(Suppl 2):19Google Scholar
  15. Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA (2004a) Cellular and subcellular localization of endogenous nitric oxide in senescent pea plants. Plant Physiol 136:2722–2733CrossRefGoogle Scholar
  16. Corpas FJ, Barroso JB, León AM, Carreras A, Quirós M, Palma JM, Sandalio LM, del Río LA (2004b) Peroxisomes as a source of nitric oxide. In: Magalhaes JR, Singh RP, Passos LP (eds) Nitric oxide signaling in higher plants. Studium Press, Houston, pp 111–129Google Scholar
  17. Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodríguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM, del Río LA, Barroso JB (2006a) The expresión of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994CrossRefGoogle Scholar
  18. Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA (2006b) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254CrossRefGoogle Scholar
  19. Corpas FJ, Carreras A, Valderrama R, Chaki M, Palma JM, del Río LA, Barroso JB (2007a) Reactive nitrogen species and nitrosative stress in plants. Plant Stress 1:37–41Google Scholar
  20. Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165:1319–1330PubMedCrossRefGoogle Scholar
  21. Corpas FJ, Barroso JB, Palma JM, del Río LA (2009) Peroxisomes as key organelles in the metabolism of reactive oxygen species, reactive nitrogen species and reactive sulphur species. In: Terlecky SR, Titorenko V (eds) Emergent functions of the peroxisome. Research Signpost, Kerala, India, pp 97–124Google Scholar
  22. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci 57:779–795PubMedCrossRefGoogle Scholar
  23. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357PubMedGoogle Scholar
  24. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459PubMedCrossRefGoogle Scholar
  25. Desai M, Hu J (2008) Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HY5 HOMOLOG, and the peroxisomal protein PEROXIN11b. Plant Physiol 146:1117–1127PubMedCrossRefGoogle Scholar
  26. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedCrossRefGoogle Scholar
  27. Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107PubMedCrossRefGoogle Scholar
  28. Distefano S, Palma JM, McCarthy I, del Río LA (1999) Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta 209:308–313PubMedCrossRefGoogle Scholar
  29. Douce R, Heldt HW (2000) Photorespiration. In: Leegood RC, Sharkey TD, von Cammerer S (eds) Photosynthesis: physiology and metabolism, Kluwer, Dordrecht, Holland, pp 115–136Google Scholar
  30. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333PubMedCrossRefGoogle Scholar
  31. Fahimi HD, Sies H (eds) (1987) Peroxisomes in biology and medicine. Berlin, Springer-VerlagGoogle Scholar
  32. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  33. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  34. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345PubMedCrossRefGoogle Scholar
  35. Halliwell B, Gutteridge NM (2007) Free radicals in biology and medicine, 4th edition. Oxford University Press, OxfordGoogle Scholar
  36. Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2. J Biol Chem 281:6884–6888PubMedCrossRefGoogle Scholar
  37. Hardham AR (2007) Cell biology of plant-oomycete interactions. Cell Microbiol 9:31–39PubMedCrossRefGoogle Scholar
  38. Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E (2005) Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. Plant Cell Physiol 46:782–789PubMedCrossRefGoogle Scholar
  39. Hayashi M, Nishimura M (2006) Arabidopsis thaliana–a model organism to study plant peroxisomes. Biochim Biophys Acta 1763:1382–1391PubMedCrossRefGoogle Scholar
  40. Huang AHC, Trelease RN, Moore Jr TS (1983) Plant peroxisomes. Academic, New YorkGoogle Scholar
  41. Igamberdiev AU, Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60:651–674PubMedCrossRefGoogle Scholar
  42. Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284PubMedGoogle Scholar
  43. Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274:30451–30458Google Scholar
  44. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855PubMedCrossRefGoogle Scholar
  45. Koh S, André A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529PubMedCrossRefGoogle Scholar
  46. Kużniak E, Skłodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200PubMedCrossRefGoogle Scholar
  47. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196PubMedCrossRefGoogle Scholar
  48. Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA (2005) Peroxisomal monodehydroascorbate reductase: genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123PubMedCrossRefGoogle Scholar
  49. Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914PubMedCrossRefGoogle Scholar
  50. López-Huertas E, Sandalio LM, Gómez M, del Río LA (1997) Superoxide radical generation in peroxisomal membranes: evidence for the participation of the 18 kDa integral membrane polypeptide. Free Radic Res 26:497–506PubMedCrossRefGoogle Scholar
  51. López-Huertas E, Corpas FJ, Sandalio LM, del Río LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536PubMedCrossRefGoogle Scholar
  52. López-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–777PubMedCrossRefGoogle Scholar
  53. Loughran PA, Stolz DB, Vodovotz Y, Watkins SC, Simmons RL, Billiar TR (2005) Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci USA 102:13837–13842PubMedCrossRefGoogle Scholar
  54. Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341PubMedCrossRefGoogle Scholar
  55. Martini G, Ursini MV (1996) A new lease of life for an old enzyme. Bioessays 18:631–637PubMedCrossRefGoogle Scholar
  56. Mateos RM, León AM, Sandalio LM, Gómez M, del Río LA, Palma JM (2003) Peroxisomes from pepper fruits (Capsicum annuum L.): purification, characterisation and antioxidant activity. J Plant Physiol 160:1507–1516PubMedCrossRefGoogle Scholar
  57. McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073CrossRefGoogle Scholar
  58. Minorsky PV (2002) Peroxisomes: organelles of diverse function. Plant Physiol 130:517–518CrossRefGoogle Scholar
  59. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  60. Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative systems in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon Pennellii. J Exp Bot 55:1105–1113PubMedCrossRefGoogle Scholar
  61. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  62. Mullen RT, Trelease RN (1996) Biogenesis and membrane properties of peroxisomes: does the boundary membrane serve and protect? Trends Plant Sci 1:389–394Google Scholar
  63. Mullineaux PM, Karpinski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol 141:346–350PubMedCrossRefGoogle Scholar
  64. Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395PubMedCrossRefGoogle Scholar
  65. Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35PubMedCrossRefGoogle Scholar
  66. Nila AG, Sandalio LM, López MG, Gómez M, del Río LA, Gómez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–581PubMedCrossRefGoogle Scholar
  67. Nishimura M, Hayashi M, Kato A, Yamaguchi K, Mano S (1996) Functional transformation of microbodies in higher plant cells. Cell Struct Funct 21:387–393PubMedCrossRefGoogle Scholar
  68. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefGoogle Scholar
  69. Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signalling molecules. Biochim Biophys Acta 1763:1478–1495PubMedCrossRefGoogle Scholar
  70. Ogawa K, Kanematsu S, Asada K (1996) Intra- and extra-cellular localization of ‘cytosolic’ CuZn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol 37:790–799Google Scholar
  71. Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74PubMedCrossRefGoogle Scholar
  72. Palma JM, Gómez M, Yáñez J, del Río LA (1987) Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Plant Physiol 85:570–574PubMedCrossRefGoogle Scholar
  73. Palma JM, López-Huertas E, Corpas FJ, Sandalio LM, Gómez M, del Río LA (1998) Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plant 104:720–726CrossRefGoogle Scholar
  74. Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530CrossRefGoogle Scholar
  75. Pastori GM, del Río LA (1997) Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes. Plant Physiol 113:411–418PubMedGoogle Scholar
  76. Reddy JK, Warren JR, Reddy MK, Lalwani ND (1982) Hepatic and renal effects of peroxisome proliferators: biological implications. Ann N Y Acad Sci 386:81–110PubMedCrossRefGoogle Scholar
  77. Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–608PubMedCrossRefGoogle Scholar
  78. Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193PubMedCrossRefGoogle Scholar
  79. del Río LA, Lyon DS, Olah I, Glick B, Salin ML (1983) Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 158:216–224CrossRefGoogle Scholar
  80. del Río LA, Fernández VM, Rupérez FL, Sandalio LM, Palma JM (1989) NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol 89:728–731PubMedCrossRefGoogle Scholar
  81. del Río LA, Donaldson RP (1995) Production of superoxide radicals in glyoxysomal membranes from castor bean endosperm. J Plant Physiol 146:283–287CrossRefGoogle Scholar
  82. del Río LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P, López-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 24:434–438PubMedGoogle Scholar
  83. del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200PubMedCrossRefGoogle Scholar
  84. del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002a) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272CrossRefGoogle Scholar
  85. del Río LA, Sandalio LM, Palma JM, Corpas FJ, López-Huertas E, Romero-Puertas MC, McCarthy I (2002b) Peroxisomes, reactive oxygen metabolism, and stress-related enzyme activities. In: Baker A, Graham IA (eds) Plant peroxisomes. Biochemistry, cell biology and biotechnological applications. Kluwer, Dordrecht, The Netherlands, pp 221–258Google Scholar
  86. del Río LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81PubMedCrossRefGoogle Scholar
  87. del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792PubMedCrossRefGoogle Scholar
  88. del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signalling. Plant Physiol 141:330–335Google Scholar
  89. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110PubMedCrossRefGoogle Scholar
  90. Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. J Exp Bot 58:2417–2427PubMedCrossRefGoogle Scholar
  91. Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, del Río LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res (Suppl) 31:S25–S31CrossRefGoogle Scholar
  92. Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686CrossRefGoogle Scholar
  93. Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2•− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134CrossRefGoogle Scholar
  94. Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52PubMedCrossRefGoogle Scholar
  95. Sakuma S, Fujimoto Y, Sakamoto Y, Uchiyama T, Yoshioka K, Nishida H, Fujita T (1997) Peroxynitrite induces the conversion of xanthine dehydrogenase to oxidase in rabbit liver. Biochem Biophys Res Commun 230:476–479PubMedCrossRefGoogle Scholar
  96. Sandalio LM, Palma JM, del Río LA (1987) Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum L. Plant Sci 51:1–8CrossRefGoogle Scholar
  97. Sandalio LM, Fernández VM, Rupérez FL, del Río LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiol 87:1–4PubMedCrossRefGoogle Scholar
  98. Schäfer L, Feirabend J (2000) Photoinactivation and protection of glycolate oxidase in vitro and in leaves. Z. Naturfors 55c:361–372Google Scholar
  99. Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574CrossRefGoogle Scholar
  100. Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275:20346–20354PubMedCrossRefGoogle Scholar
  101. Titorenko VI, Rachubinski RA (2004) The peroxisome: orchestrating important developmental decisions from inside the cell. J Cell Biol 164:641–645PubMedCrossRefGoogle Scholar
  102. Tolbert NE, Gee R, Husic DW, Dietrich S (1987) Peroxisomal glycolate metabolism and the C2 oxidative photosynthetic carbon cycle. In: Fahimi HD, Sies H (eds) Peroxisomes in Biology and Medicine, Springer, Berlin, pp 213–222CrossRefGoogle Scholar
  103. Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–1459PubMedCrossRefGoogle Scholar
  104. Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984PubMedCrossRefGoogle Scholar
  105. Vicentini F, Matile P (1993) Gerontosomes, a multifunctional type of peroxisomes in senescent leaves. J Plant Physiol 142:50–56CrossRefGoogle Scholar
  106. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C-3 plants. EMBO J 16:4806–4816PubMedCrossRefGoogle Scholar
  107. Wood ZA, Schröder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40PubMedCrossRefGoogle Scholar
  108. Zemojtel T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luis A. del  Río
    • 1
    Email author
  • Luisa M. Sandalio
    • 1
  • Francisco J. Corpas
    • 1
  • María C. Romero-Puertas
    • 1
  • José M. Palma
    • 1
  1. 1.Departamento de Bioquímica, Biología Celular y Molecular de Plantas,Estación Experimental del ZaidínConsejo Superior de Investigaciones Científicas (CSIC)GranadaSpain

Personalised recommendations