Reactive Oxygen Species in Ozone Toxicity

  • Kirk Overmyer
  • Michael Wrzaczek
  • Jaakko KangasjärviEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM)


The entry of ozone (O3) to the leaf intercellular airspace is followed by its degradation to reactive oxygen species (ROS) and the induction of active ROS production by the plant itself. Using genetic and genomic tools, some of the components involved in plant O3 responses have begun to be delineated. Mutant screens and analyses in the model plant Arabidopsis thaliana have revealed a picture of the O3 response that is coming into focus in the form of recurring themes that constitute a core O3 response, which consists of a network of ROS and hormonal interactions controlling the magnitude of O3-induced cell death.


Reactive Oxygen Species Salicylic Acid Jasmonic Acid Oxidative Burst Hybrid Poplar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahlfors R, Lång S, Overmyer K, Jaspers P, Brosché M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inzé D, Palva ET, Kangasjärvi J (2004a) Arabidopsis radical-induced cell death 1 belongs to the WWE protein-protein interaction-domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16:1925–1937CrossRefGoogle Scholar
  2. Ahlfors R, Macioszek V, Rudd J, Brosché M, Schlichting R, Scheel D, Kangasjärvi J (2004b) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases (MAPKs) in Arabidopsis thaliana plants during ozone exposure. Plant J 40:512–522CrossRefGoogle Scholar
  3. Barth C, Conklin PL (2003) The lower cell density of leaf parenchyma in the Arabidopsis thaliana mutant lcd1-1 is associated with increased sensitivity to ozone and virulent Pseudomonas syringae. Plant J 35:206–218PubMedCrossRefGoogle Scholar
  4. Bechtold U, Richard O, Zamboni A, Gapper C, Geisler M, Pogson B, Karpinski S, Mullineaux PM (2008) Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J Exp Bot 59:121–133PubMedCrossRefGoogle Scholar
  5. Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S (2000) CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett 482:19–24PubMedCrossRefGoogle Scholar
  6. Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192PubMedCrossRefGoogle Scholar
  7. Booker FL, Burkey KO, Overmyer K, Jones AM (2004) Differential responses of G-protein Arabidopsis thaliana mutants to ozone. New Phytol 162:633–641CrossRefGoogle Scholar
  8. Brosché M, Kangasjärvi S-L, Overmyer K, Wrzaczek M, Kangasjärvi J (2009) Stress signaling III: Reactive oxygen species. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, The NetherlandsGoogle Scholar
  9. Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM (1999) Dissection of the ozone-induced calcium signature. Plant J 17: 575–579PubMedCrossRefGoogle Scholar
  10. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) synthesis. Proc Natl Acad Sci USA 96:4198–4203PubMedCrossRefGoogle Scholar
  11. Conklin PL, Saracco SA, Norris SR, Last RA (2000) Identification of ascorbate acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856PubMedGoogle Scholar
  12. Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974PubMedCrossRefGoogle Scholar
  13. Eckardt NA, Pell EJ (1994) O3-induced degradation of rubisco protein and loss of rubisco messenger-RNA in relation to leaf age in Solanum-Tuberosum L. New Phytol 127:741–748CrossRefGoogle Scholar
  14. Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608PubMedCrossRefGoogle Scholar
  15. Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant J 41:615–626PubMedCrossRefGoogle Scholar
  16. Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011CrossRefGoogle Scholar
  17. Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT (2004) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental UV-B irradiation. Plant Physiol 134:275–285PubMedCrossRefGoogle Scholar
  18. Fujibe T, Saji H, Watahiki MK, Yamamoto KT (2006) Overexpression of the radical-induced cell death1 (RCD1) gene of Arabidopsis causes weak rcd1 phenotype with compromised oxidative-stress responses. Biosci Biotech Biochem 70:1827–1831CrossRefGoogle Scholar
  19. Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914PubMedCrossRefGoogle Scholar
  20. González-Bayón R, Kinsman EA, Quesada V, Vera A, Robles P, Ponce MR, Pyke KA, Micol JL (2006) Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. J Exp Bot 57:3019–3031PubMedCrossRefGoogle Scholar
  21. Hamel LP, Miles GP, Samuel MA, Ellis BE, Seguin A, Beaudoin N (2005) Activation of stress-responsive mitogen-activated protein kinase pathways in hybrid poplar (Populus trichocarpa x Populus deltoides). Tree Physiol 25:277–288PubMedCrossRefGoogle Scholar
  22. He YK, Tang RH, Hao Y, Stevens RD, Cook CW, Am SM, Jing LF, Yang ZG, Chen LG, Guo FQ, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971PubMedCrossRefGoogle Scholar
  23. Joo JH, Wang S, Chen JG, Jones AM, Fedoroff N (2004) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970CrossRefGoogle Scholar
  24. Kadono T, Yamaguchi Y, Furuichi T, Hirono M, Garrec J, Kawano T (2006) Ozone-induced cell death mediated with oxidative and calcium signaling pathways in tobacco Bel W3 and Bel B cell suspension cultures. Plant Signal Behav 1:321–322CrossRefGoogle Scholar
  25. Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036CrossRefGoogle Scholar
  26. Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794CrossRefGoogle Scholar
  27. Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821PubMedCrossRefGoogle Scholar
  28. Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR (2000) Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol 123:487–496PubMedCrossRefGoogle Scholar
  29. Kollist T, Moldau H, Rasulov B, Oja V, Ramma H, Huve K, Jaspers P, Kangasjärvi J, Kollist H (2007) A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant. Physiol Plant 129:796–803CrossRefGoogle Scholar
  30. Lee JS, Ellis BE (2007) Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J Biol Chem 282:25020–25029PubMedCrossRefGoogle Scholar
  31. Li PH, Mane SP, Sioson AA, Robinet CV, Heath LS, Bohnert HJ, Grene R (2006) Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ 29:854–868PubMedCrossRefGoogle Scholar
  32. Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated responses in Arabidopsis. Plant Cell 16:1938–1950PubMedCrossRefGoogle Scholar
  33. Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartles C, Kangasjärvi J (2002) Ethylene synthesis regulated by bi-phasic induction of ACC synthase and ACC oxidase genes is required for H2O2 accumulation and cell death in ozone-exposed tomato. Plant Physiol 130:1918–1926PubMedCrossRefGoogle Scholar
  34. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176PubMedCrossRefGoogle Scholar
  35. Nickstadt A, Thomma BPHJ, Feussner I, Kangasjärvi J, Zeier J, Loeffler C, Scheel D, Berger S (2004) The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol Plant Pathol 5:425–434PubMedCrossRefGoogle Scholar
  36. Örvar BL, McPherson J, Ellis BE (1997) Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J 11:203–212PubMedCrossRefGoogle Scholar
  37. Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342PubMedCrossRefGoogle Scholar
  38. Overmyer K, Brosché M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinanen M, Saarma M, Scheel D, Kangasjärvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol 137:1092–1104PubMedCrossRefGoogle Scholar
  39. Overmyer K, Kollist H, Tuominen H, Betz C, Langebartels C, Wingsle G, Kangasjärvi S-L, Brader G, Mullineaux P, Kangasjärvi J (2008) Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants. Plant Cell Environ 31:1237–1249PubMedCrossRefGoogle Scholar
  40. Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Jr, Kangasjärvi J (2000) The ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862PubMedCrossRefGoogle Scholar
  41. Pasqualini S, Paolocci F, Borgogni A, Morettini R, Ederli L (2007) The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants. Plant Cell Environ 30:1545–1556PubMedCrossRefGoogle Scholar
  42. Pasqualini S, Piccioni C, Reale L, Ederli L, la Torre G, Ferranti F (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122–1134PubMedCrossRefGoogle Scholar
  43. Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273CrossRefGoogle Scholar
  44. Pellinen R, Palva T, Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20:349–356PubMedCrossRefGoogle Scholar
  45. Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjärvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130:549–560PubMedCrossRefGoogle Scholar
  46. Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614PubMedCrossRefGoogle Scholar
  47. Rao MV, Lee H, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32:447–456PubMedCrossRefGoogle Scholar
  48. Rao MV, Lee HI, Creelman RA, Mullet JA, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646PubMedCrossRefGoogle Scholar
  49. Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22:367–376PubMedCrossRefGoogle Scholar
  50. Samuel MA, Walia A, Mansfield SD, Ellis BE (2005) Overexpression of SIPK in tobacco enhances ozone-induced ethylene formation and blocks ozone-induced SA accumulation. J Exp Bot 56:2195–2201PubMedCrossRefGoogle Scholar
  51. Schraudner M, Langebartels C, Sandermann H, Jr (1997) Changes in the biochemical status of plants cells induced by the environmental pollutant ozone. Physiol Plant 100:274–280CrossRefGoogle Scholar
  52. Schraudner M, Moeder W, Wiese C, Van Camp W, Inzé D, Langebartels C, Sandermann H, Jr (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16:235–245CrossRefGoogle Scholar
  53. Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467PubMedCrossRefGoogle Scholar
  54. Streatfield SJ, Weber A, Kinsman EA, Häusler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Fluegge UI, Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11:1609–1621PubMedCrossRefGoogle Scholar
  55. Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci USA 96:13577–13582PubMedCrossRefGoogle Scholar
  56. Tuominen H, Overmyer K, Keinänen M, Kollist H, Kangasjärvi J (2004) Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis. Plant J 39:59–69PubMedCrossRefGoogle Scholar
  57. Vahala J, Ruonala R, Keinänen M, Tuominen H, Kangasjärvi J (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol 132:185–195PubMedCrossRefGoogle Scholar
  58. Vahala J, Schlagnhaufer CD, Pell EJ (1998) Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol Plant 103:45–50CrossRefGoogle Scholar
  59. Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–493PubMedCrossRefGoogle Scholar
  60. Wegener A, Gimbel W, Werner T, Hani J, Ernst D, Sandermann H (1997) Sequence analysis and ozone-induced accumulation of polyubiquitin mRNA in Pinus sylvestris. Can J For Res 27:945–948CrossRefGoogle Scholar
  61. Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangäsjarvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25:717–726CrossRefGoogle Scholar
  62. Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308PubMedCrossRefGoogle Scholar
  63. Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440PubMedCrossRefGoogle Scholar
  64. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3:e1994; doi:10.1371/journal.pone.0001994PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kirk Overmyer
    • 1
  • Michael Wrzaczek
    • 1
  • Jaakko Kangasjärvi
    • 1
    Email author
  1. 1.Plant Biology, Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations