Skip to main content

Reactive Oxygen-Generating NADPH Oxidases in Plants

  • Chapter
  • First Online:
Book cover Reactive Oxygen Species in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Reactive oxygens produced by the integral membrane protein NADPH oxidase (NOX) function in defense, development, and redox-dependent signaling. They share common structural features and are evolutionarily of ancient origin and thus ubiquitous in eukaryotes. In plants, NOX are part of a multigene family and are implicated in diverse events including innate immunity and development. Due to the fact that reactive oxygens are toxic, and in many cases short-lived, the activity of these oxidases is tightly regulated both temporally and spatially. The recent elucidation of domains for activation by calcium and Rac binding in NOX as well as its positioning on membrane lipid rafts sketches a fascinating picture of its functional dynamics. This review draws upon comparative structure–function relationships between plant and animal NOXs to portray novel aspects of their biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  PubMed  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  PubMed  CAS  Google Scholar 

  • Ambasta RK, Kumar P, Griendling KK, Schmidt HHHW, Busse R, Brandes RP (2004) Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941

    Article  PubMed  CAS  Google Scholar 

  • Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R (2007) Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiol 143:1817–1826

    Article  PubMed  CAS  Google Scholar 

  • Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004a) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072

    Article  PubMed  CAS  Google Scholar 

  • Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH (2001) A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601

    Article  PubMed  CAS  Google Scholar 

  • Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar GZ, Krause KH, Cox JA (2004b) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  PubMed  CAS  Google Scholar 

  • Barcelo AR (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220:747–756

    Article  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    Article  PubMed  CAS  Google Scholar 

  • Binet MN, Humbert C, Lecourieux D, Vantard M, Pugin A (2001) Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiol 125:564–572

    Article  PubMed  CAS  Google Scholar 

  • Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  CAS  Google Scholar 

  • Bourque S, Binet MN, Ponchet M, Pugin A, Lebrun-Garcia A (1999) Characterization of the cryptogein binding sites on plant plasma membranes. J Biol Chem 274:34699–34705

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    Article  PubMed  CAS  Google Scholar 

  • Cross AR, Heyworth PG, Rae J, Curnutte JT (1995) A variant X-linked chronic granulomatous disease patient (X91+) with partially functional cytochrome b. J Biol Chem 270:8194–8200

    Article  PubMed  CAS  Google Scholar 

  • Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes – prototype of the NOX electron transport chain systems. Biochim Biophys Acta Bioenergetics 1657:1–22

    Article  CAS  Google Scholar 

  • DeLeo FR, Burritt JB, Yu LX, Jesaitis AJ, Dinauer MC, Nauseef WM (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275:13986–13993

    Article  PubMed  CAS  Google Scholar 

  • Doussiere J, Gaillard J, Vignais PV (1996) Electron transfer across the O2− generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 35:13400–13410

    Article  PubMed  CAS  Google Scholar 

  • Doussiere J, Gaillard J, Vignais PV (1999) The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry 38:3694–3703

    Article  PubMed  CAS  Google Scholar 

  • Edens WA, Sharling L, Cheng GJ, Shapira R, Kinkade JM, Lee T, Edens HA, Tang XX, Sullards C, Flaherty DB, Benian GM, Lambeth JD (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154:879–891

    Article  PubMed  CAS  Google Scholar 

  • Ellmark SHM, Dusting GJ, Fui MNT, Guzzo-Pernell N, Drummond GR (2005) The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res 65:495–504

    Article  PubMed  CAS  Google Scholar 

  • Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Johnson MK, Finnegan MG, Miki T, Yoshida LS, Kakinuma K (1995) Electron-Spin-Resonance studies on neutrophil cytochrome b558 – evidence that low-spin heme iron is essential for O2− generating activity. J Biol Chem 270:12685–12689

    Article  PubMed  CAS  Google Scholar 

  • Giesbert S, Schurg T, Scheele S, Tudzynski P (2008) The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol Plant Path 9:317–327

    Article  CAS  Google Scholar 

  • Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    Article  PubMed  CAS  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  PubMed  CAS  Google Scholar 

  • Grennan AK (2007) Lipid rafts in plants. Plant Physiol 143:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    Article  PubMed  CAS  Google Scholar 

  • Han WX, Li HW, Villar VAM, Pascua AM, Dajani MI, Wang XY, Natarajan A, Quinn MT, Felder RA, Jose PA, Yu PY (2008) Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells. Hypertension 51:481–487

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Csikasz RI, Yamamoto DL, Shabalina IG, Wikstrom P, Wilcke M, Bengtsson T (2007) Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase. Cell Signal 19:1610–1620

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Yamaoka-Toji M, Hilenski L, Patrushev NA, Anwar GM, Quinn MT, Ushio-Fukai M (2005) IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2. Arterioscler Thromb Vasc Biol 25:2295–2300

    Article  PubMed  CAS  Google Scholar 

  • Isogai Y, Iizuka T, Shiro Y (1995) The mechanism of electron donation to molecular-oxygen by phagocytic cytochrome b558. J Biol Chem 270:7853–7857

    Article  PubMed  CAS  Google Scholar 

  • Jagnandan D, Church JE, Banfi B, Stuehr DJ, Marrero MB, Fulton DJR (2007) Novel mechanism of activation of NADPH oxidase 5 – Calcium sensitization via phosphorylation. J Biol Chem 282:6494–6507

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Yang ZB, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Kao YY, Gianni D, Bohl B, Taylor RM, Bokoch GM (2008) Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem 283:12736–12746

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Melzer M, Prokhorenko I, Johansson T, Wingsle G (2005) Hydrogen peroxide and expression of hipI-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans. J Exp Bot 56:2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Karpinska B, Karlsson M, Schinkel H, Streller S, Suss KH, Melzer M, Wingsle G (2001) A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein localization. Plant Physiol 126:1668–1677

    Article  PubMed  CAS  Google Scholar 

  • Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109

    Article  PubMed  Google Scholar 

  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein Rac is a regulator of cell death in plants. Proc Natl Acad Sci USA 96:10922–10926

    Article  PubMed  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O2–-generating activity in potato tuber tissues. J Exp Bot 57:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD (2004) Nox enzymes and the biology of reactive oxygen. Nat Rev Immuno 4:181–189

    Article  CAS  Google Scholar 

  • Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F (2008) The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in Bright Yellow-2 tobacco cells. Plant Physiol 146:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: A proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Shah AM (2002) Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 277:19952–19960

    Article  PubMed  CAS  Google Scholar 

  • Li QA, Harraz MM, Zhou WH, Zhang LN, Ding W, Zhang YL, Eggleston T, Yeaman C, Banfi B, Engelhardt JF (2006) Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26:140–154

    Article  PubMed  CAS  Google Scholar 

  • Light DR, Walsh C, O’Callaghan AM, Goetzl EJ, Tauber AI (1981) Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 20:1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    Article  PubMed  CAS  Google Scholar 

  • Mayhew SG, OConnell DP, OFarrell PA, Yalloway GN, Geoghegan SM (1996) Regulation of the redox potentials of flavodoxins: Modification of the flavin binding site. Biochem Soc Trans 24:122–127

    PubMed  CAS  Google Scholar 

  • Mizrahi A, Berdichevsky Y, Ugolev Y, Molshanski-Mor S, Nakash Y, Dahan I, Alloul N, Gorzalczany Y, Sarfstein R, Hirshberg M, Pick E (2006) Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J Leukocyte Biol 79:881–895

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells – Purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Morel J, Fromentin J, Blein JP, Simon-Plas F, Elmayan T (2004) Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J 37:282–293

    Article  PubMed  CAS  Google Scholar 

  • Mumbengegwi DR, Li Q, Li CH, Bear CE, Engelhardt JF (2008) Evidence for a superoxide permeability pathway in endosomal membranes. Mol Cell Biol 28:3700–3712

    Article  PubMed  CAS  Google Scholar 

  • Nadimpalli R, Yalpani N, Johal GS, Simmons CR (2000) Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. J Biol Chem 275:29579–29586

    Article  PubMed  CAS  Google Scholar 

  • Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122:277–291

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  PubMed  CAS  Google Scholar 

  • Odonnell VB, Tew DG, Jones OTG, England PJ (1993) Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil Nadph Oxidase. Biochem J 290:41–49

    CAS  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  PubMed  CAS  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    Article  PubMed  CAS  Google Scholar 

  • Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs I, Russ A, Stumm G, Schimenti JC, Bergstrom DE (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491

    Article  PubMed  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang ZB, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    Article  PubMed  CAS  Google Scholar 

  • Pugin A, Frachisse JM, Tavernier E, Bligny R, Gout E, Douce R, Guern J (1997) Early events induced by the elicitor cryptogein in tobacco cells: Involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9:2077–2091

    Article  PubMed  CAS  Google Scholar 

  • Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvaiscante F, Bruneteau M, Billard V, Michel G, Pernollet JC (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired-resistance in tobacco. Eur J Biochem 183:555–563

    Article  PubMed  CAS  Google Scholar 

  • Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH (1992) Cytochrome-B558: the flavin-binding component of the phagocyte NADPH Oxidase. Science 256:1459–1462

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  CAS  Google Scholar 

  • Segal AW, West I, Wientjes F, Nugent JHA, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G (1992) Cytochrome b-245 Is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788

    PubMed  CAS  Google Scholar 

  • Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH Oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interactions 21:808–819

    Article  Google Scholar 

  • Serrander L, Jaquet V, Bedard K, Plastre O, Hartley O, Arnaudeau S, Demaurex N, Schlegel W, Krause KH (2007) NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Shao DM, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550:101–106

    Article  PubMed  CAS  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147

    Article  PubMed  CAS  Google Scholar 

  • Sorkin A, von Zastrow M (2002) Signal transduction and endocytosis: Close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ, Fasehun OA, Kwon NS, Gross SS, Gonzalez JA, Levi R, Nathan CF (1991) Inhibition of macrophage and endothelial-cell nitric-oxide synthase by diphenyleneiodonium and its analogs. FASEB J 5:98–103

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T (2004) Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf- and flower-senescence. Plant Mol Biol 54:613–622

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: Diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581:1202–1208

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91(phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  PubMed  CAS  Google Scholar 

  • Ushio-Fukai M (2006) Redox signaling in angiogenesis: Role of NADPH oxidase. Cardiovasc Res 71:226–235

    Article  PubMed  CAS  Google Scholar 

  • Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL (2005) Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 7:308–317

    Article  PubMed  CAS  Google Scholar 

  • Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459

    Article  PubMed  CAS  Google Scholar 

  • Vilhardt F, van Deurs B (2004) The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 23:739–748

    Article  PubMed  CAS  Google Scholar 

  • Wallace MA, Liou LL, Martins J, Clement MHS, Bailey S, Longo VD, Valentine JS, Gralla EB (2004) Superoxide inhibits 4Fe–4S cluster enzymes involved in amino acid biosynthesis - Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 279:32055–32062

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Yesbergenova Z, Yang GH, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876

    Article  PubMed  CAS  Google Scholar 

  • Yoshida LS, Saruta F, Yoshikawa K, Tatsuzawa O, Tsunawaki S (1998) Mutation at histidine 338 of gp91phox depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase. J Biol Chem 273:27879–27886

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS ONE 3:e2410

    Article  PubMed  Google Scholar 

  • Zhukov A, Ingelman-Sundberg M (1999) Relationship between cytochrome P450 catalytic cycling and stability: fast degradation of ethanol-inducible cytochrome P450 2E1 (CYP2E1) in hepatoma cells is abolished by inactivation of its electron donor NADPH-cytochrome P450 reductase. Biochem J 340:453–458

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges the support of the Dr. Josef Cohn MINERVA Center for Biomembrane Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fluhr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fluhr, R. (2009). Reactive Oxygen-Generating NADPH Oxidases in Plants. In: Rio, L., Puppo, A. (eds) Reactive Oxygen Species in Plant Signaling. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00390-5_1

Download citation

Publish with us

Policies and ethics