Skip to main content

InSAR Imaging of Aleutian Volcanoes

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

In this chapter we discuss our InSAR observations of Aleutian volcanoes that have been active during historical time, starting with Kiska Volcano in the west and ending with Mount Wrangell in the east. The start of historical time in Alaska is poorly defined and varies considerably with location. Most early eruption reports were from ship captains or other explorers in the latter part of the eighteenth century; such reports are spotty and of questionable accuracy (e.g., fumarolic activity might have been mistaken for an eruption, or an eruption might have been attributed to the wrong volcano). Records are generally better near long-lasting indigenous settlements, but these are widely scattered and mostly absent in the more remote parts of the arc. Even in the latter half of the twentieth century, many eruption reports were from pilots flying over the area; such information is incomplete and in some cases could not be independently verified. A worldwide network of Volcanic Ash Advisory Centers (VAAC) was set up in the 1990s by the United Nations’ International Civil Aviation Organization (ICAO) to mitigate the risks posed by drifting ash to the aviation community. The VAACs collect information from volcano observatories, satellite imagery, aircraft reports, and other sources to issue volcanic ash advisories. At least since the beginning of the twenty-first century, eruption detection around the globe has become nearly complete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The surface displacements produced by a hydrostatic pressure change within a spherical cavity with radius α much smaller than its depth d and embedded in an elastic half-space (equivalent to a Mogi (1958) point source) are given by (Lisowski 2007, pp. 288–289): \( \left( \begin{gathered} u \hfill \\ v \hfill \\ w \hfill \\ \end{gathered} \right) = \alpha^{3} \Delta P\frac{{\left( {1 - \nu } \right)}}{G}\left( \begin{gathered} \frac{x}{{R^{3} }} \hfill \\ \frac{y}{{R^{3} }} \hfill \\ \frac{d}{{R^{3} }} \hfill \\ \end{gathered} \right) \) where u, v, w are displacements at the point (x,y,0), the center of the cavity is at (0,0,−d), and \( R = \sqrt {x^{2} + y^{2} + z^{2} } \) is the radial distance from the center of the cavity to a point on the free surface. The scaling coefficient, representing the power (strength) of the source, lumps together the pressure change ΔP in the cavity, its radius, the shear modulus G, and Poisson’s ratio ν of the half-space. Their individual contributions, therefore, cannot be separated. That is, a small pressure change in a large cavity will produce the same surface deformation as a large pressure change in a small cavity, provided the radius of the cavity is much smaller than its depth. A pressure increment ΔP on the inner surface of a spherical cavity with radius α will increase the cavity radius by Δα, where (McTigue 1987, Eq. 11): \( \Delta \alpha = \frac{1}{4}\frac{\Delta P}{G}\alpha \) . The volume increase in a sphere from an incremental increase in its radius is given by: \( \frac{4}{3}\pi \left( {\alpha + \Delta \alpha } \right)^{3} \) and: \( \Delta V_{cavity} \cong \frac{\Delta P}{G}\pi \alpha^{3} \) . This approximation considers only the mechanical properties of the surrounding half-space and is not equivalent to the injection or withdrawal volume ΔV fluid of a compressible fluid such as magma (Johnson et al. 2000). However, if compressibility effects are ignored and a value is assumed for the cavity radius (typically R = 1 km), it becomes possible to estimate the volume of magma added or withdraw from a subsurface reservoir to produce an observed surface deformation pattern.

  2. 2.

    In cases like this we follow common usage by using “steam” to mean condensed water vapor. Technically speaking, steam is the invisible vapor phase of water. Plumes of condensed steam typically rise from fumaroles and sometimes from volcanic vents during eruptions.

  3. 3.

    Formal uncertainties in model parameters derived from InSAR images are difficult to specify owing to poorly modeled error sources such as atmospheric delays and orbit errors, and also because the degree of spatial correlation among nearby pixels in deformation interferograms generally is unknown. Our estimate of 1–2 km uncertainty in the source depth is based on the observed scatter in estimates from all modeled interferograms.

  4. 4.

    Radar pulses can be transmitted and received in various polarizations, including vertical (V) and horizontal (H). Images produced from pulses that are both transmitted and received with vertical (or horizontal) polarization are referred to as VV- (or HH-) polarized.

  5. 5.

    D-PAF is the German Processing and Archiving Facility for ERS-1/ERS-2 data products. D-PAF jointly is operated by the German Remote Sensing Data Center (DFD) of the German Aerospace Research Center (DLR) and the Department on Kinematics and Dynamics of the Earth of the Geo Research Center Potsdam (GFZ).

  6. 6.

    Each interferometric fringe corresponds to a range change of one-half wavelength. For the C-band SAR sensors aboard ERS-1/ERS-2, which operate at a wavelength of 5.66 cm, each fringe represents 2.83 cm of range change.

  7. 7.

    Persistent, spatially coherent atmospheric anomalies are more likely in steep terrain, which can affect local weather. For example, tall volcanoes can set up quasi-steady patterns of water–vapor concentration both horizontally and vertically (e.g., windward clouds and leeward clear skies, or summit cap clouds and sunny flanks). Such effects can be especially troublesome at large volcanoes such as Mount Etna, Italy (Delacourt et al. 1998; Beauducel et al. 2000) and Mauna Loa, Hawai’i.

  8. 8.

    This description applies equally well to all of the magma storage zones we envision beneath Aleutian volcanoes. Clearly, they are not idealized cavities filled with 100 % melt, as might be inferred from the source models we use to characterize them.

  9. 9.

    Prior to the end of March 1992, ERS-1 was in 3-day repeat-pass mode. However, the imaging modes prior to 10 December 1991 and after 28 December 1991, were different. As a consequence, images acquired prior to 10 December 1991 cannot be paired with images acquired from 29 December 1991 to March 1992 to produce interferograms. We produced and analyzed all available ERS-1 interfergroams for our study of Westdahl Peak.

  10. 10.

    The descriptor “open-conduit” is used here to refer to volcanoes that erupt frequently or for long periods of time without appreciable ground deformation except possibly very near the vent. The term does not imply the existence of a continuous magma-filled conduit from a kilometers-deep source to the surface. Such a conduit might exist in some cases such as the current situation at the summit of Kilauea volcano, Hawai‘i, where a vent that opened in March 2008 is occupied by a persistent lava lake. In such cases the term “open-vent,” implying that the magma column is exposed continuously to the atmosphere, seems more appropriate.

References

  • Abe, K. (1992). Seismicity of the caldera-making eruption of Mount Katmai, Alaska, in 1912. Seismological Society of America Bulletin, 82, 175–191.

    Google Scholar 

  • Abrams, M., Bianchi, R., & Pieri, D. (1996). Revised mapping of lava flows at Mount Etna, Sicily. Photogrammetric Engineering and Remote Sensing, 57, 1353–1359.

    Google Scholar 

  • Alaska Volcano Observatory. (2013). http://www.avo.alaska.edu

  • Anderson, E. M. (1936). The dynamics of the formation of cone-sheets, ring-dikes and cauldron-subsidences. Proceedings of the Royal Society of Edinburgh Section B, 56, 128–157.

    Google Scholar 

  • Aspinall, W., Miller, A., Lynch, L., Latchman, J., Stewart, R., & Power, J. (1998). Soufriere Hills eruption, 1995–1997—Volcanic earthquake locations and fault plane solutions. Geophysical Research Letters, 25, 3397–3400.

    Google Scholar 

  • Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., & Lund, B. (2013). Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. Journal of Geophysical Research: Solid Earth, 118, 1331–1344. doi:10.1002/jgrb.50082.

    Google Scholar 

  • Bacon, C. R. (2000). Pre-eruptive volatiles in the most recent eruptions of Aniakchak Volcano, Alaska (abstract) EOS Transactions America Geophysical Union, 81(48), 1376–1377.

    Google Scholar 

  • Bacon, C. R., Calvert, A. T., Nye, C. J., & Sisson, T. W. (2003). History and eruptive style of Mount Veniaminof, a huge Alaskan basalt-to-dacite volcano with Pleistocene and Holocene caldera-forming eruptions. Eos, Transactions, American Geophysical Union, 84(46), F1570. (Fall Meeting Supplement, abstract #V32D-1048).

    Google Scholar 

  • Bacon, C., Sisson, T., & Mazdab, T. (2007). Young cumulate complex beneath Veniaminof caldera Aleutian arc, dated by zircon in erupted plutonic blocks. Geology, 35, 491–494.

    Google Scholar 

  • Bacon, C. R., Neal, C. A., Miller, T. P., McGimsey, R. G., & Nye, C. J. (2013). Holocene geology and geochemistry, and ongoing seismicity of Aniakchak caldera volcano, Aleutian arc : Abstract V14B-08 presented at 2013 Fall Meeting, AGU, San Francisco, California, 9–13 December.

    Google Scholar 

  • Beauducel, F., Briole, P., & Froger, J. L. (2000). Volcano-wide fringes in ERS satellite radar interferograms of Etna (1992–1998)—deformation or tropospheric effect? Journal of Geophysical Research, 105, 16391–16402.

    Google Scholar 

  • Beauducel, F., De Natale, G., Obrizzo, F., & Pingue, F. (2004). 3-D modeling of Campi Flegrei ground deformations: Role of caldera boundary discontinuities. Pure and Applied Geophysics, 161(7), 1329–1344. doi:10.1007/s00024-004-2507-4.

  • Bechor, N. B. D., & Zebker, H. A. (2006). Measuring two-dimensional movements using a single InSAR pair. Geophysical Research Letters, 33, L16311. doi:10.1029/2006GL026883.

    Google Scholar 

  • Begét, J. E., Almberg, L., Larsen, J., Stelling, P., & Wolfe, B. (2004) Eruptions through caldera lakes in Alaska: Surges, tsunamis, and catastrophic floods. In Proceedings of the 4th Biennial Workshop on subduction processes emphasizing the Japan-Kurile-Kamchatka-Aleutian arcs, August 21–27, 2004, Petropavlovsk-Kamchatsky (Also presented at IAVCEI General Assembly, Pucón, Chile, November 2004).

    Google Scholar 

  • Begét, J. E., & Kienle, J. (1992). Cyclic formation of debris avalanches at Mount St Augustine volcano. Nature, 356(6371), 701–704.

    Google Scholar 

  • Begét, J. E., & Kowalik, Z. (2006). Confirmation and calibration of computer modeling of tsunamis produced by Augustine Volcano, Alaska. Science of Tsunami Hazards, 24(4), 257.

    Google Scholar 

  • Begét, J. E., Larsen, J. F., Neal, C. A., Nye, C. J., & Schaefer, J. R. (2005). Preliminary volcano-hazard assessment for Okmok volcano, Umnak Island, Alaska (p. 32). Fairbanks: Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. Report of Investigations 2004-3.

    Google Scholar 

  • Begét, J. E., & Nye, C. J. (1994). Postglacial eruption history of Redoubt Volcano, Alaska. In T. P. Miller, & B. A. Chouet (Eds.), The 19891990 eruptions of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62(1–4), 31–54. (special issue).

    Google Scholar 

  • Begét, J. E., Nye, C. J., & Bean, K. W. (2000). Preliminary volcano-hazard assessment for Makushin Volcano, Alaska (pp. 1–22). Fairbanks: Alaska Division of Geological & Geophysical Surveys. Report of Investigations (2000-4).

    Google Scholar 

  • Beget, J. E., Nye, C. J., Schaefer, J. R., & Stelling, P. L. (2002). Preliminary volcano-hazard assessment for Shishaldin Volcano, Alaska (p. 28). Alaska Division of Geological & Geophysical Surveys. Report of Investigations RI 2002-4.

    Google Scholar 

  • Begét, J. E., Nye, C. J., Schaefer, J. R., & Stelling, P. L. (2003). Preliminary volcano-hazard assessment for Shishaldin Volcano, Alaska (p. 28). Fairbanks: Alaska Division of Geological & Geophysical Surveys. Report of Investigations RI 2002-41 sheet, scale 1:500,000.

    Google Scholar 

  • Begét, J. E., Nye, C. J., & Stelling, P. L. (1998). Postglacial collapse and regrowth of Shishaldin Volcano Alaska, requires sustained high eruption rates. Eos, Transactions, American Geophysical Union, 79(17), S359.

    Google Scholar 

  • Benson, C., Motyka, R., McNutt, S., Luethi, M., & Truffer, M. (2007). Glacier-volcano interactions in the north crater of Mt Wrangell, Alaska. Annals of Glaciology, 45, 48–57.

    Google Scholar 

  • Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.

    Google Scholar 

  • Biggs, J., Bürgmann, R., Freymueller, J., Lu, Z., Ryder, I., Parsons, B., et al. (2009). The postseismic response to the 2002 M 7.9 Denali fault earthquake: constraints from InSAR (interferometric synthetic aperture radar). Geophysical Journal International, 176, 353–367.

    Google Scholar 

  • Biggs, J., Lu, Z., Fourneir, T., & Freymueller, J. (2010). Magma flux at Okmok Volcano, Alaska from a joint inversion of continuous GPS, campaign GPS and InSAR. Journal of Geophysical Research, 115, B12401. doi:10.1029/2010JB007577.

  • Biot, M. A. (1956). Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27, 240–253.

    Google Scholar 

  • Bridges, D. L., & Gao, S. S. (2006). Spatial variation of seismic b-values beneath Makushin Volcano Unalaska Island, Alaska. Earth and Planetary Science Letters, 245, 408–415.

    Google Scholar 

  • Briole, P., Massonnet, D., & Delacourt, C. (1997). Post-eruptive deformation associated with the 1986–87 and 1989 lava flows of Etna detected by radar interferometry. Geophysical Research Letters, 24, 37–40.

    Google Scholar 

  • Byers, F. M. (1959). Geology of Umnak and Bogoslof Islands, Aleutian Islands, Alaska, in Investigations of Alaskan volcanoes, U.S. Geological Survey Bulletin B, 1028-L, 267–369. 5 sheets, scale 1 at 1:63,360, 1 at 1:96,000, and 1 at 1:300,000.

    Google Scholar 

  • Byers, F. M. (1961). Petrology of three volcanic suites Umnak and Bogoslof Islands, Aleutian Island, Alaska. Geological Society of America Bulletin, 72, 93–128.

    Google Scholar 

  • Byers, F. M., & Barth, T. F. W. (1953). Volcanic activity on Akun and Akutan Islands, Alaska. In Proceedings 7th Pacific Science Congress, New Zealand, Vol. 2, pp. 382–397.

    Google Scholar 

  • Byers, F. M., Jr., Hopkins, D. M., Wier, K. L., & Fisher, B. (1947). Part 3, Volcano investigations on Umnak Island, 1946 (pp. 19–53). Reston: U.S. Geological Survey. (Alaskan volcano investigations report no. 2: Progress of investigations in 1946).

    Google Scholar 

  • Calahorrano, A. (2001). Study of 1998–1999 Quito seismic swarm origin. M.S. thesis, Escuela Politecnica Nacional, Quito-Ecuador, p. 199 (in Spanish).

    Google Scholar 

  • Caplan-Auerbach, J., & McNutt, S. R. (2003). New insights into the 1999 eruption of Shishaldin volcano Alaska, based on acoustic data. Bulletin of Volcanology, 65(6), 405–417.

    Google Scholar 

  • Caplan-Auerbach, J., & Petersen, T. (2005). Repeating coupled earthquakes at Shishaldin Volcano, Alaska. Journal of Volcanology and Geothermal Research, 145, 151–172.

    Google Scholar 

  • Cashman, K. V., Mangan, M. T., & Newman, S. (1994). Surface degassing and modifications to vesicle size distributions in active basalt flows. Journal of Volcanology and Geothermal Research, 61, 45–68.

    Google Scholar 

  • CAVW (Eds.) (1951–1975). Catalog of active volcanoes of the world. (22 volumes). Rome: International Association of Volcanology and Chemistry of the Earth’s Interior.

    Google Scholar 

  • Cervelli, P., Fournier, T., Freymueller, J., & Power, J. A. (2006). Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska. Geophysical Research Letters, 33, L18304. doi:10.1029/2006GL027219.

    Google Scholar 

  • Cervelli, P., Fournier, T., Freymueller, J. T., Power, J. A., Lisowski, M., & Pauk, B. (2010). The geodetic perspective on the 2006 eruption of Augustine Volcano. In J. A. Power, M. L. Coombs, & J. T. Freymueller (Eds.), Scientific investigations of Augustine Volcano, Alaska, following the 2006 eruption (pp. 427–452). U.S. Geological Survey Professional Paper 1769.

    Google Scholar 

  • Cervelli, P., Grapenthin, R., & Freymueller, J. (2009). Geodetic evidence for lower crustal magma withdrawal during the 2009 eruption of the Redoubt volcano, Alaska (abstract). Eos, Transactions, American Geophysical Union, 90(52). Fall Meeting Supplement, abstract #V43A-2212.

    Google Scholar 

  • Chapin, E. (2000). Users guide for multimosaic, version 1.1. California: JPL Technical Memorandum. (334-97-004).

    Google Scholar 

  • Coats, R. R. (1950). Volcanic activity in the Aleutian Arc (pp. 35–49). Raton: U.S. Geological Survey Bulletin B 0974-B. 1 sheet, scale unknown.

    Google Scholar 

  • Coats, R. R. (1956a). Reconnaissance geology of some western Aleutian Islands, Alaska, in investigations of Alaskan volcanoes (pp. 83–100). Raton: U.S. Geological Survey Bulletin B 1028-E. 1 sheet, scale unknown.

    Google Scholar 

  • Coats, R. R. (1956b). Geology of northern Kanaga Island, Alaska, in investigations of Alaskan volcanoes (pp. 69–81). Raton: U.S. Geological Survey Bulletin B 1028-D. 1 sheet, scale 1:25,000.

    Google Scholar 

  • Coats, R. R. (1959a). Geologic reconnaissance of Gareloi Island, Aleutian Islands, Alaska, in investigations of Alaskan volcanoes (pp. 249–256). Raton: U.S. Geological Survey Bulletin B 1028-J. 1 sheet, scale unknown.

    Google Scholar 

  • Coats, R. R. (1959b). Geologic reconnaissance of Semisopochnoi Island, western Aleutian Islands, Alaska, in investigations of Alaskan volcanoes (pp. 477–519). Raton: U.S. Geological Survey Bulletin B 1028-O. 1 sheet, scale 1:25,000.

    Google Scholar 

  • Coats, R. R., & Marsh, B. D. (1984). Reconnaissance geology and petrology of northern Tanaga, Aleutian Islands, Alaska [abstract]. Geological Society of America Abstracts with Programs, 16(6), 474.

    Google Scholar 

  • Coats, R. R., Nelson, W. H., Lewis, R. Q., & Powers, H. A. (1961). Geologic reconnaissance of Kiska Island, Aleutian Islands, Alaska (pp. 563–581). Raton: U.S. Geological Survey Bulletin 1028-R. 1 sheet, scale 1:63,360.

    Google Scholar 

  • Coombs, M. L., Bull, K. F., Vallance, J. W., Schneider, D. J., Thoms, E. E., Wessels, R., & McGimsey, R. G. (2010). Timing, distribution, and volume of proximal products of the 2006 eruption of Augustine Volcano, Alaska. In J. A. Power, M. L. Coombs, & J. T. Freymueller (Eds.), Scientific investigations of Augustine Volcano, Alaska, following the 2006 eruption (pp. 145–185). U.S. Geological Survey Professional Paper 1769.

    Google Scholar 

  • Coombs, M. L., McGimsey, R. G., & Browne, B. L. (2007a). Preliminary volcano-hazard assessment for the Tanaga Volcanic Cluster, Tanaga Island, Alaska (p. 36). U.S. Geological Survey Scientific Investigations Report 2007-5094. Retrieved form http://pubs.usgs.gov/sir/2007/5094/

  • Coombs, M., McGimsey, R. G., & Browne, B. (2008). Preliminary volcano-hazard assessment for Gareloi Volcano, Gareloi Island, Alaska. U.S. Geological Survey Scientific Investigations Report 2008–5159.

    Google Scholar 

  • Coombs, M. L., McGimsey, R. G., & Browne, B. L. (2012). Geologic map of Mount Gareloi, Gareloi Island, Alaska (p. 18). U.S. Geological Survey Scientific Investigations Map 3145, pamphlet. 1 sheet, scale: 1:24,000, Retrieved from http://pubs.usgs.gov/sim/3145/

  • Coombs, M. L., Neal, C. A., Wessels, R. L., & McGimsey, R. G. (2006). Geothermal disruption of summit glaciers at Mount Spurr Volcano, 2004–6: An unusual manifestation of volcanic unrest (p. 33). U.S. Geological Survey Professional Paper 1732-B. Retrieved from http://pubs.usgs.gov/pp/pp1732/pp1732b/index.html

  • Coombs, M. L., White, S. M., & Scholl, D. W. (2007b). Massive edifice failure at Aleutian arc volcanoes. Earth and Planetary Science Letters, 256, 403–418. doi:10.1016/j.epsl.2007.01.030.

    Google Scholar 

  • Corradini, S., Merucci, L., Prata, A. J., & Piscini, A. (2010). Volcanic ash and SO2 in the 2008 Kasatochi eruption—retrievals comparison from different IR satellite sensors. Journal of Geophysical Research, 115(D00L21), 10. doi:10.1029/2009JD013634.

  • Crisp, J. A. (1984). Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research, 20, 177–201.

    Google Scholar 

  • Davies, J. N., Sykes, L., House, L., & Jacob, K. (1981). Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence of high seismic potential. Journal of Geophysical Research, 86, 3821–3855.

    Google Scholar 

  • Davies, J. N., Taber, J., & Miller, T. P. (1988). Seismicity and geology of Mount Dutton, a volcano near the tip of the Alaska Peninsula [abstract]. Eos: Transactions American Geophysical Union, 69(44), 1507.

    Google Scholar 

  • Dean, K. G., Dehn, J., Papp, K. R., Smith, S., Izbekov, P., Peterson, R., et al. (2004). Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska. Journal of Volcanology and Geothermal Research, 135, 51–73.

    Google Scholar 

  • De Angelis, S., & McNutt, S.R. (2005). Degassing and hydrothermal activity at Mt. Spurr, Alaska during the summer of 2004 inferred from the complex frequencies of long-period events. Geophysical Research Letters, 32, 4. doi:10.1029/2005GL022618.

  • De Natale, G., & Pingue, F. (1993). Ground deformation in collapsed caldera structures. Journal of Volcanology and Geothermal Research, 57, 19–38.

    Google Scholar 

  • Dean, K. G., Engle, K., Partington, K., Groves, J., & Dehn, J. (2002). Analysis of surface processes using SAR Data: Westdahl Volcano, Alaska. International Journal of Remote Sensing, 23, 4529–4545.

    Google Scholar 

  • Decker, P. L., Reifenstuhl, A. E., & Gillis, R. J. (2008). Structural linkage of major tectonic elements in the Ugashik-Becharof Lakes region, northeastern Alaska Peninsula. In R. R Reifenstuhl, & P. L. Decker (Eds.), Bristol Bay-Alaska Peninsula region, overview of 20042007 geologic research (pp. 85–103). Alaska Division of Geological & Geophysical Surveys Report of Investigation 2008-1F. 1 sheet.

    Google Scholar 

  • Delacourt, C., Briole, P., & Achache, J. (1998). Tropospheric corrections of SAR interferograms with strong topography—application to Etna. Geophysical Research Letters, 25, 2849–2852.

    Google Scholar 

  • Delaney, P., Pollard, D., Ziony, J., & McKee, E. (1986). Field relations between dikes and joints—emplacement processes and paleostress analysis. Journal of Geophysical Research, 91, 4920–4938.

    Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21, 2191–2194.

    Google Scholar 

  • Detterman, R. L., Miller, T. P., Yount, M. E., & Wilson, F. H. (1981). Geologic map of the Chignik and Sutwik Island quadrangles, Alaska. U.S. Geological Survey Miscellaneous Investigations Series Map I 1229, unpaged. 1 sheet, scale 1:250,000.

    Google Scholar 

  • Detterman, R. L., Hudson, T., Plafker, G., Tysdal, R. G., & Hoare, J. M. (1976). Reconnaissance geologic map along Bruin Bay and Lake Clark faults in Kenai and Tyonek quadrangles, Alaska (p. 4). U.S. Geological Survey Open-File Report 76-477, 1 sheet, scale 1:250,000.

    Google Scholar 

  • Dieterich, J. H., & Decker, R. W. (1975). Finite element modeling of surface deformation associated with volcanism. Journal of Geophysical Research, 80, 4094–4102.

    Google Scholar 

  • Dixon, J. P., & Power, J. A. (2009). The January 2006 volcanic-tectonic earthquake swarm at Mount Martin, Alaska. In P. J. Haeussler, & J. P. Galloway (Eds.), Studies by the U.S. Geological Survey in Alaska, 2007 (p. 17). U.S. Geological Survey Professional Paper 1760-D.

    Google Scholar 

  • Dixon, J. P., Power, J. A., & Stihler, S. D. (2005). Seismic observations of Westdahl volcano and western Unimak Island, Alaska: 19992005 (abstract). American Geophysical Union. Fall Meeting 2005, abstract #S11B-0169.

    Google Scholar 

  • Dixon, J. P., Stihler, S. D., Power, J. A., Tytgat, G., Estes, S., Moran, S. C. et al. (2002). Catalog of earthquake hypocenters at Alaskan volcanoes—January 1, 2000 through December 31, 2001 (p. 56). U.S.Geological.Survey Open-File Report 02-342.

    Google Scholar 

  • Dixon, J. P., Stihler, S. D., Power, J. A., Tytgat, G., Estes, S., & McNutt, S. R. (2006). Catalog of earthquake hypocenters at Alaskan volcanoesJanuary 1 through December 31, 2005 (p. 78). U.S. Geological Survey Open-File Report 2006-1264. Retrieved from http://pubs.usgs.gov/of/2006/1264/of2006-1264.pdf

  • Dixon, J. P., Stihler, S. D., & Power, J. A. (2008b). Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007 (p. 82). U.S. Geological Survey Data Series 367.

    Google Scholar 

  • Dixon, J. P., Stihler, S. D., Power, J. A., & Searcy, C. (2008a). Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006 (p. 79). U.S. Geological Survey Data Series 326. Retrieved from http://pubs.usgs.gov/ds/326/

  • Dixon, J. P., & Stihler, S. D. (2009). Catalog of earthquake hypocenters at Alaskan volcanoes—January 1 through December 31, 2008. U.S. Geological Survey Data Series, 467, 86.

    Google Scholar 

  • Dixon, J. P., Stihler, S. D, Power, J. A., Haney, M., Parker, T., Searcy, C. K., & Prejean, S. (2013). Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012 (p. 84). U.S. Geological Survey Data Series 789. Retrieved from http://pubs.usgs.gov/ds/789/

  • Doroshin, P. (1870). Some volcanoes, their eruptions, and earthquakes in the former Russian holdings in America. zu St. Petersburg, Zweite Serie, Funfter Rand, pp. 25–44 (in Russian).

    Google Scholar 

  • Doukas, M. P., & McGee, K. A. (2007). A compilation of gas emission-rate data from volcanoes of Cook Inlet (Spurr, Crater Peak, Redoubt, Iliamna, and Augustine) and Alaska Peninsula (Douglas, Fourpeaked, Griggs, Mageik, Martin, Peulik, Ukinrek Maars, and Veniaminof), Alaska, from 19952006 (p. 13). U.S. Geological Survey Open-File Report 2007-1400. Retrieved from http://pubs.usgs.gov/of/2007/1400/

  • Dreher, S. T., Eichelberger, J. C., & Larsen, J. F. (2005). The petrology and geochemistry of the Aniakchak caldera-forming ignimbrite Aleutian Arc, Alaska. Journal of Petrology, 46, 1747–1768. doi:10.1093/petrology/egi032.

    Google Scholar 

  • Drewes, H., Fraser, G. D., Snyder, G. L., & Garnett, H. F., Jr. (1961). Geology of Unalaska Island and adjacent insular shelf, Aleutian Islands, Alaska (pp. 583–676). U.S. Geological Survey Bulletin 1028-S.

    Google Scholar 

  • Dvorak, J. J., & Dzurisin, D. (1993). Variations in magma supply rate at Kīlauea Volcano Hawaii. Journal of Geophysical Research, 98, 255–268.

    Google Scholar 

  • Dvorak, J., & Dzurisin, D. (1997). Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Reviews of Geophysics, 35, 343–384.

    Google Scholar 

  • Dvorak, J., & Okamura, A. T. (1987). A hydraulic model to explain variations in summit tilt rate at Kīlauea and Mauna Loa volcanoes. In R. W. Decker, T. L. Wright, & P. H. Stauffer (Eds.), Volcanism in Hawaii (pp. 1281–1296). U.S. Geological Survey Professional Paper 1350.

    Google Scholar 

  • Dzurisin, D., Lisowski, M., Poland, M. P., Sherrod, D. R., & LaHusen, R. G. (2008). Constraints and conundrums resulting from ground-deformation measurements made during the 2004–2005 dome-building eruption of Mount St. Helens, Washington. In D. R. Sherrod, W. E. Scott, & P. H. Stauffer (Eds.), A volcano rekindledthe renewed eruption of Mount St. Helens, 20042006 (Chap. 14, pp. 281–300). U.S. Geological Survey Professional Paper 1750.

    Google Scholar 

  • Dzurisin, D., Lisowski, M., & Wicks, C. W. (2009). Continuing inflation at Three Sisters volcanic center, central Oregon Cascade Range USA, from GPS, leveling, and InSAR observations. Bulletin of Volcanology, 71, 1091–1110. doi:10.1007/s00445-009-0296-4.

    Google Scholar 

  • Dzurisin, D., Lisowski, L., Wicks, C. W., Poland, M. P., & Endo, E. T. (2006). Geodetic observations and modeling of magmatic inflation at the three Sisters volcanic center, central Oregon Cascade Range, USA: Journal of Volcanology and Geothermal Research special issue The Changing Shape of Active Volcanoes, 150(1–3), 35–54, doi:10.1016/j.jvolgeores.2005.07.011.

    Google Scholar 

  • Dzurisin, D., Savage, J. C., & Fournier, R. O. (1990). Recent crustal subsidence at Yellowstone Caldera, Wyoming. Bulletin of Volcanology, 52, 247–270.

    Google Scholar 

  • Dzurisin, D., Wicks, C. W, & Poland, M. P. (2012). History of surface displacements at the Yellowstone Caldera, Wyoming, from leveling surveys and InSAR observations, 19232008 (p. 68). U.S. Geological Survey Professional Paper 1788, and data files. Retrieved from http://pubs.usgs.gov/pp/1788/

  • Eichelberger, J. C., Carrigan, C. R., Westrich, H. R., & Price, R. H. (1986). Non-explosive silicic volcanism. Nature, 323, 598–602.

    Google Scholar 

  • Ellrod, G., Connell, B., & Hillger, D. (2003). Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. Journal of Geophysical Research, 108(D12), 4356. doi:10.1029/2002jd002802.

  • Ellrod, G., & Schreiner, A. (2004). Volcanic ash detection and cloud top height estimates from the GOES-12 Imager—coping without a 12μ infrared band. Geophysical Research Letters, 31, L15110. doi:10.1029/2004GL020395.

    Google Scholar 

  • Endo, E. T., Malone, S. D., Noson, L. L., & Weaver, C. S. (1981). Locations, magnitudes, and statistics of the March 20–May 18 earthquake sequence. In P. W. Lipman, & D. R. Mullineaux (Eds.), The 1980 Eruptions of Mount St. Helens, Washington (pp. 93–107). U.S. Geological Survey Professional Paper 1250.

    Google Scholar 

  • Estes, S. (1978). Seismotectonic studies of lower Cook Inlet, Kodiak Island and the Alaska Peninsula area of Alaska. M.S. Thesis. University of Alaska Fairbanks. p. 142.

    Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S. et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004. doi:10.1029/2005RG000183.

  • Farrell, J., Smith, R. B., Taira, T., Chang, W.-L., & Puskas, C. M. (2010). Dynamics and rapid migration of the energetic 2008–2009 Yellowstone Lake earthquake swarm. Geophysical Research Letters, 37, L19305. doi:10.1029/2010GL044605.

    Google Scholar 

  • Fialko, Y., & Simons, M. (2000). Deformation and seismicity in the Coso geothermal area, Inyo County, California: observations and modeling using satellite radar interferometry. Journal of Geophysical Research, 105(B9), 21,781–21,793. doi:10.1029/2000JB900169.

  • Fierstein, J. (2007). Explosive eruptive record in the Katmai region, Alaska Peninsula: An overview. Bulletin of Volcanology, 69(5), 469–509. doi:10.1007/s00445-006-0097-y.

    Google Scholar 

  • Fierstein, J., & Hildreth, W. (1992). The plinian eruptions of 1912 at Novarupta Katmai National Park, Alaska. Bulletin of Volcanology, 54, 646–684.

    Google Scholar 

  • Finch, R. H. (1935). Akutan volcano. Zeitschrift für Vulkanologie, 16 (3), 155–160, 4 plates, scale unknown.

    Google Scholar 

  • Fisher, M. A., Bruns, T. R., & von Huene, R. (1981). Transverse tectonic boundaries near Kodiak Island Alaska. Geological Society of America Bulletin, 92(1), 10–18.

    Google Scholar 

  • Fournelle, J. H. (1988). Geology and petrology of Shishaldin volcano, Unimak Island, Aleutian arc, Alaska (p. 507). Ph.D. Dissertation, The Johns Hopkins University. 2 plates, scale unknown.

    Google Scholar 

  • Fournier, R. O. (1999). Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94, 1193–1212.

    Google Scholar 

  • Fournier, R. O. (2007). Hydrothermal systems and volcano geochemistry, chapter 10. In D. Dzurisin (Ed.) Volcano deformation: Geodetic monitoring techniques (pp. 323–341). Berlin: Springer, Springer-Praxis Books in Geophysical Sciences.

    Google Scholar 

  • Fournier, T. J. (2008) Analysis and interpretation of volcano deformation in Alaska: Studies from Okmok and Mt. Veniaminof volcano. Ph.D. Dissertation, University of Alaska, Fairbanks, p. 134.

    Google Scholar 

  • Fournier, T., Freymueller, J., & Cervelli, P. (2009). Tracking magma volume recovery at Okmok volcano using GPS and an unscented Kalman filter. Journal of Geophysical Research, 114(B02405), 18. doi:10.1029/2008JB005837.

  • Fraser, G. D., & Barnett, H. F. (1959). Geology of the Delarof and westernmost Andreanof Islands, Aleutian Islands, Alaska, in Investigations of Alaskan volcanoes (pp. 211–248). U.S. Geological Survey Bulletin B 1028-I. 4 sheets, scale 3 at 1:25,000, and 1 at 1:250,000.

    Google Scholar 

  • Freymueller, J. T., & Kaufman, A. M. (2010). Changes in the magma system during the 2008 eruption of Okmok volcano, Alaska, based on GPS measurements. Journal of Geophysical Research, 115 (B12415), doi:10.1029/2010JB007716.

  • Freymueller, J. T., Fournier, T., & Kaufman, A. M. (2008a). Deformation of Okmok volcano associated with its 2008 eruption. Eos, Transactions, American Geophysical Union, 89(53), 1. Abstract A53B-0260.

    Google Scholar 

  • Furuya, M. (2005). Quasi-static thermoelastic deformation in an elastic half-space: Theory and application to InSAR observations at Izu-Oshima volcano, Japan. Geophysical Journal International, 161, 230–242.

    Google Scholar 

  • Gaddis, L. R., Mouginis-Mark, P. J., & Hayashi, J. N. (1990). Lava flow surface textures: SIR-B radar image texture, field observations, and terrain measurements. Photogrammetric Engineering and Remote Sensing, 56, 211–224.

    Google Scholar 

  • Gardine, M., West, M., Werner, C., & Doukas, M. (2011). Evidence of magma intrusion at Fourpeaked volcano, Alaska in 2006–2007 from a rapid-response seismic network and volcanic gases. Journal of Volcanology and Geothermal Research, 200, 192–200.

    Google Scholar 

  • Geist, E. L., Childs, J. R., & Scholl, D. W. (1987). Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins Aleutian ridge. Marine Petroleum Geology, 4, 334–352.

    Google Scholar 

  • Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J., & Doukas, M. P. (2002). Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research, 107(B9), 2189. doi:10.1029/2001JB000407.

  • Gesch, D. B. (1994). Topographic data requirements for EOS global change research (p. 60). U.S. Geological Survey Open-File Report OF 94-626.

    Google Scholar 

  • Global Volcanism Network. (1978). Bulletin of the Global Volcanism Network, Smithsonian Institution. http://www.volcano.si.edu/reports/bulletin/

  • Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25, 4035–4038.

    Google Scholar 

  • Gordon, R. G., Stein, S., DeMets, C., & Argus, D. (1987). Statistical tests for closure of plate motion circuits. Geophysical Research Letters, 14, 587–590.

    Google Scholar 

  • Grapenthin, R., Freymueller, J. T., & Kaufman, A. M. (2012). Geodetic Observations during the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2012.04.021.

  • Grey, D. (2003). Post-caldera eruptions at Okmok volcano, Umnak Island, Alaska, with emphasis on recent eruptions from Cone A. (MS thesis, University of Alaska), Fairbanks.

    Google Scholar 

  • Griggs, R. F. (1922). The valley of ten thousand smokes (p. 341). Washington: The National Geographic Society.

    Google Scholar 

  • Guffanti, M., Schneider, D. J., Wallace, K. L., Hall, T., Bensimon, D. R., & Salinas, L. J. (2010). Aviation response to a widely dispersed volcanic ash and gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA. Journal of Geophysical Research, 115(D00L19), 9. doi:10.1029/2010JD013868.

  • Harlow, D., Power, J., Laguerta, E., Ambubuyog, G., White, R. & Hoblitt, R. P. (1997). Precursory seismicity and forecasting of the June 15, 1991 eruption of Mount Pinatubo, Philippines. In C. Newhall, & R. Punongbuyan (Eds.), Fire and mud: Eruptions and lahars of Mount Pinatubo, Philippines (pp. 285–306). Washington: University of Washington Press.

    Google Scholar 

  • Healy, J., Rubey, W., Griggs, D., & Raleigh, C. (1968). The Denver earthquakes. Science, 161, 1301–1310.

    Google Scholar 

  • Hildreth, W. (1983). The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes Katmai National Park, Alaska. Journal of Volcanology and Geothermal Research, 18, 1–56.

    Google Scholar 

  • Hildreth, W. (1987). New perspectives on the eruption of 1912 in the Valley of Ten Thousand Smokes Katmai National Park, Alaska. Bulletin of Volcanology, 49, 680–693.

    Google Scholar 

  • Hildreth, W. (1991). The timing of caldera collapse at Mount Katmai in response to magma withdrawal toward Novarupta. Geophysical Research Letters, 18(8), 1541–1544.

    Google Scholar 

  • Hildreth, E. W., Fierstein, J., & Calvert, A. T. (2007). Blue Mountain and The Gas Rocks: Rear-arc dome clusters on the Alaska Peninsula. In P. J. Haeussler (Ed.), Studies by the U.S. Geological Survey in Alaska, 2006 (p. 27). U.S. Geological Survey Professional Paper 1739-A.

    Google Scholar 

  • Hildreth, W., & Fierstein, J. (2000). Katmai volcanic cluster and the great eruption of 1912. Geological Society of America Bulletin, 112, 1549–1620.

    Google Scholar 

  • Hildreth, W., & Fierstein, J. (2003). Geologic map of the Katmai volcanic cluster, Katmai National Park, Alaska. U.S. Geological Survey Miscellaneous Investigation Series Map I 2778, unpaged. 1 sheet, scale 1:63,360.

    Google Scholar 

  • Hildreth, W., & Fierstein, J. (2012a). The Novarupta-Katmai eruption of 1912: Largest eruption of the twentieth century; centennial perspectives (p. 259). U.S. Geological Survey Professional Paper 1791.

    Google Scholar 

  • Hildreth, W., & Fierstein, J. (2012b). Eruptive history of Mount Katmai, Alaska. Geosphere, 8, 1527–1567.

    Google Scholar 

  • Hildreth, W., Lanphere, M. A., & Fierstein, J. (2003a). Geochronology and eruptive history of the Katmai volcanic cluster Alaska Peninsula. Earth and Planetary Science Letters, 214(1–2), 93–114.

    Google Scholar 

  • Hildreth, W., Fierstein, J., Lanphere, M. A., & Siems, D. F. (2003b). Trident volcano: Four contiguous stratocones adjacent to Katmai Pass, Alaska Peninsula. In J. P. Galloway (Ed.), Studies by the U.S. Geological Survey in Alaska, 2001 (pp. 153–180). U.S. Geological Survey Professional Paper PP 1678.

    Google Scholar 

  • HKS Inc. (2003). ABAQUS, version 6.4, formerly http://www.hks.com, now http://www.simulia.com

  • Fournier, T. J., & Freymueller, J. T. (2008) Inflation detected at Mount Veniaminof, Alaska, with campaign GPS. Geophysical Research Letters, 35 (L20306), 5. doi:10.1029/2008GL035503

  • Hensley, S., & Shaffer, S. (1996). DEM mosaicing. In UCLA Extension Class Notes for Synthetic Aperture Radar Interferometry.

    Google Scholar 

  • Jacob, K. H. (1984). Estimates of long-term probabilities for future great earthquakes in the Aleutians. Geophysical Research Letters, 11, 295–298.

    Google Scholar 

  • Jaeger, J. C. (1969). Elasticity, fracture and fluid flow (p. 268). London: Methuen and Co. Ltd, .

    Google Scholar 

  • Jaggar, T. A. (1927). The Aleutian Islands. The Volcano Letter, 116, 1. (Kīlauea Report No. 792, Week ending March 16, 1927).

    Google Scholar 

  • Jewett, S. C., Bodkin, J. L., Chenelot, H., Esslinger, G. G., & Hoberg, M. K. (2010). The Nearshore Benthic Community of Kasatochi Island, one year after the 2008 Volcanic Eruption. Arctic, Antarctic, and Alpine Research, 42, 315–324.

    Google Scholar 

  • Jicha, B. R., Coombs, M. L., Calvert, A. T., & Singer, B. S. (2012). Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians. Geological Society of America Bulletin, 124(5/6), 842–856. doi:10.1130/B30472.1.

    Google Scholar 

  • Jicha, B. R., & Singer, B. S. (2006). Volcanic history and magmatic evolution of Seguam Island Aleutian Island arc, Alaska. Geological Society of America Bulletin, 118, 805–822.

    Google Scholar 

  • Jicha, B. R., Singer, B. S., Brophy, J. G., Fournelle, J. H., Johnson, C. M., Beard, B. L., et al. (2004). Variable impact of the subducted slab on Aleutian Island arc magma sources—evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances. Journal of Petrology, 45(9), 1845–1875.

    Google Scholar 

  • Johnson, D. J., Sigmundsson, F., & Delaney, P. T. (2000). Comment on “Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kīlauea volcano” by P.T. Delaney and D.F McTigue. Bulletin of Volcanology, 61, 491–493.

    Google Scholar 

  • Jolly, A. D., McNutt, S. R., Coombs, M. L., Stihler, S. D., & Paskievitch, J. F. (1997). Seismicity in the vicinity of the Katmai Group of volcanoes, Katmai National Park, Alaska: July 1995-March 1997 [abstract]. Eos, Transactions of the American Geophysical Union, 77(46). Fall Meeting Supplement.

    Google Scholar 

  • Jolly, A. D., & McNutt, S. R. (1999). Seismicity at the volcanoes of Katmai National Park, Alaska; July 1995–December 1997. Journal of Volcanology and Geothermal Research, 93(3–4), 173–190.

    Google Scholar 

  • Jolly, A. D., Moran, S. C., McNutt, S. R., & Stone, D. B. (2007). Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska. Journal of Volcanology and Geothermal Research, 159, 326–342. doi:10.1016/j.jvolgeores.2006.06.022.

    Google Scholar 

  • Jones, I. L., Gray, C. L., Dusureault, J., & Sowls, A. L. (2001). Auklet demography and Norway rat distribution and abundance at Sirius Point, Kiska Island, Aleutian Islands, Alaska in 2001. Retrieved from http://www.mun.ca/serg/finalKiskaREP.pdf

  • Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine earthquake, California, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92, 1377–1389.

    Google Scholar 

  • Juhle, R. W., & Coulter, H. W. (1955). The Mt. Spurr eruption, July 9, 1953. Eos, Transactions, American Geophysical Union, 36(2), 199–202.

    Google Scholar 

  • Jung, H. S., Won, J. S., & Kim, S. W. (2009). An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2859–2869.

    Google Scholar 

  • Kay, R. W. (1990). Kasatochi: central Aleutian Islands, In C. A. Wood, & J. Kienle (Eds.), Volcanoes of North America (p. 354). Cambridge: Cambridge University Press.

    Google Scholar 

  • Keith, T. E. C. (Ed.) (1995). The 1992 eruptions of Crater Peak Vent, Mount Spurr volcano, Alaska (p. 220). U.S. Geological Survey Bulletin B 2139.

    Google Scholar 

  • Kennedy, G. C., & Waldron, H. H. (1955). Geology of Pavlof Volcano and vicinity, Alaska, in Investigations of Alaskan Volcanoes (p. 19). U.S. Geological Survey Bulletin B 1028-A. 1 sheet, scale 1:100,000.

    Google Scholar 

  • Kienle, J. (1970). Gravity traverses in the Valley of ten-thousand smokes Katmai National Monument, Alaska. Journal of Geophysical Research, 75, 6641–6649.

    Google Scholar 

  • Kienle, J. (1978). Formation of two maars behind the Aleutian volcanic arc, Alaska Peninsula, April 1997, in Environmental assess of the Alaskan continental shelf (p. 696). U.S. Geological Survey. Retrieved form http://www.arlis.org/docs/vol1/OCSEAP2/Annual/5721406/A1978%20V11.pdf

  • Kienle, J., Kyle, P. R., Self, S., Motyka, R. J., & Lorenz, V. (1980). Ukinrek Maars, Alaska—I. April 1977 eruption sequence, petrology, and tectonic setting. Journal of Volcanology and Geothermal Research, 7, 11–37.

    Google Scholar 

  • Kienle, J., & Shaw, G. E. (1979). Plume dynamics, thermal energy and long-distance transport of vulcanian eruption clouds from Augustine Volcano, Alaska. Journal of Volcanology and Geothermal Research, 6(1–2), 139–164.

    Google Scholar 

  • Kilgore, W. W., Roman, D. C., Biggs, J., & Hansen, R. (2011). Seismic and geodetic investigation of the 1996–1998 earthquake swarm at Strandline Lake Alaska. Geophysical Journal International, 186(3), 1365–1379. doi:10.1111/j.1365-246X.2011.05115.x.

    Google Scholar 

  • Kisslinger, J. B. (1983). Some volcanoes, volcanic eruption, and earthquakes in the former Russian America; Peter Doroshin’s account of volcanic activity and earthquakes between 1840 and 1866. Pacific Northwest Quarterly, 74 (2), 59–68.

    Google Scholar 

  • Kwoun, O., Lu, Z., Neal, C., & Wicks, C. W, Jr. (2006). Quiescent deformation of the Aniakchak caldera Alaska mapped by InSAR. Geology, 34, 5–8.

    Google Scholar 

  • Lamb, D., Linneman, S. R., Myers, J. D., & Nicolaysen, K. E. (1992). Caldera formation on Yunaska Island, central Aleutian arc (abstract). Eos (American Geophysical Union Transactions, 1992 Fall Meeting), 73(43), 645.

    Google Scholar 

  • Lanari, R., Fornaro, G., Riccio, D., Migliaccio, M., Papathanassiou, K. P., Moreira, J. R., et al. (1996). Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: The Etna case study. IEEE Transactions on Geoscience and Remote Sensing, 34(5), 1097–1114.

    Google Scholar 

  • Larsen, G., Grönvold, K., & Thorarinsson, S. (1979). Volcanic eruption through a geothermal borehole at Námafjall, Iceland. Nature, 278, 707–710.

    Google Scholar 

  • Larsen J. F., Neal, C., Schaefer, J., Begét, J., & Nye, C. (2007). Late Pleistocene and Holocene caldera-forming eruptions of Okmok caldera, Aleutian Islands, Alaska. In J. Eichelberger, E. Gordeev, P. Izbekov, M. Kasahara, & J. Lees (Eds.), Volcanism and subduction: The Kamchatka region (Vol. 172, pp. 343–364). American Geophysical Union, Geophysical Monograph.

    Google Scholar 

  • Larsen, J., Neal, C., Webley, P., Freymueller, J., Haney, M., McNutt, S., et al. (2009). Eruption of Alaska volcano breaks historic pattern. Eos Transactions. American Geophysical Union, 90(20), 173–174.

    Google Scholar 

  • Larsen, J. F., Neal, C. A., Schaefer, J. R., Kaufman, A. M., & Lu, Z. (2014). The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska. Chronology and preliminary description of deposits and landform changes. In preparation Alaska Division of Geological and Geophysical Surveys Report of Investigation Series, July 2013.

    Google Scholar 

  • Larsen, J. F., Nye, C. J., Coombs, M. L., Tilman, M., Izbekov, P., & Cameron, C. (2010). Petrology and geochemistry of the 2006 eruption of Augustine Volcano, Alaska, In J. A. Power, M. L. Coombs & J. T. Freymueller (Eds.), Scientific investigations of Augustine Volcano, Alaska, following the 2006 eruption (pp. 335–382). U.S. Geological Survey Professional Paper 1769.

    Google Scholar 

  • Larson, K. M., & Lisowski, M. (1994). Strain accumulation in the Shumagin Islands—results of initial GPS measurements. Geophysical Research Letters, 21(6), 489–492.

    Google Scholar 

  • Lee, C.-W., Lu, Z., Jung, H.-S., Won, J.-S., & Dzurisin, D. (2010a). Surface deformation of Augustine Volcano, 1992–2005, from multiple-interferogram processing using a refined small baseline subset (SBAS) interferometric synthetic aperture radar (InSAR) approach, chapter 18. In J. Power, M. L. Coombs, & J. T. Freymueller (Eds.) The 2006 Eruption of Augustine Volcano, Alaska (pp. 453–465). U.S. Geological Survey Professional Paper 1769. Retrieved from http://pubs.usgs.gov/pp/1769/chapters/p1769_chapter18.pdf

  • Lee, C. W., Lu, Z., Won, J. S., Jung, H. S., & Dzurisin, D. (2013). Dynamic deformation of Seguam Island, Alaska, 1992–2008, from multi-interferogram InSAR processing. Journal of Volcanology and Geothermal Research, 260, 43–51.

    Google Scholar 

  • Lee, C.-W., Lu, Z., Kwoun, O.-I., & Won, J.-S. (2008). Deformation of the Augustine Volcano, Alaska, 1992–2005, measured by ERS and ENVISAT SAR interferometry. Earth Planets and Space, 60(5), 447–452.

    Google Scholar 

  • Legeley-Padovani, A., Mering, C., Guillande, R., & Huaman, D. (1997). Mapping of lava flows through spot images: An example of the Sabancaya Volcano (Peru). International Journal of Remote Sensing, 18, 3111–3133.

    Google Scholar 

  • Lisowski, M. (2007). Analytical deformation source models. In D. Dzurisin (Ed.) Volcano deformationgeodetic monitoring techniques. Springer-Praxis Books in Geophysical Sciences (pp. 279–304). Berlin: Springer.

    Google Scholar 

  • Lisowski, M., Savage, J. C., Prescott, W. H., & Gross, W. K. (1988). Absence of strain accumulation in the Shumagin seismic gap, Alaska, 1980–1987. Journal of Geophysical Research, 93(B7), 7909–7922.

    Google Scholar 

  • Lockwood, J. P., Dvorak, J. J., English, T. T., Koyanagi, R. Y., Okamura, A. T., Summers, M. L. et al. (1987). Mauna Loa 1974–1984—a decade of intrusive and extrusive activity. In R. W. Decker, T. L. Wright, & P. H. Stauffer (Eds.), Volcanism in Hawaii (Vol. 1, pp. 537–570). U.S. Geological Survey Professional Paper 1350.

    Google Scholar 

  • Lohman, R. B., & Simons, M. (2005). Some thoughts on the use of InSAR data to constrain models of surface deformation—noise structure and data downsampling. Geochemistry, Geophysics, Geosystems, 6(1), Q01007. doi:10.1029/2004GC000841.

    Google Scholar 

  • Lu, Z., & Wyss, M. (1996). Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions. Journal of Geophysical Research, 101, 803–816.

    Google Scholar 

  • Lu, Z., & Freymueller, J. (1998). Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska. Journal of Geophysical Research, 103, 29887–29894.

    Google Scholar 

  • Lu, Z., & Miyagi, Y., (2005). Comparison of GPS and InSAR deformation measurements at Okmok volcano, Alaska. ASF News and Notes, Alaska Satellite Facility, 2(3), 1–2, Fall 2005-4.

    Google Scholar 

  • Lu, Z., & Kwoun, O. (2008). Radarsat-1 and ERS interferometric analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests. IEEE Transactions on Geoscience and Remote Sensing, 46, 2167–2184.

    Google Scholar 

  • Lu, Z., & Dzurisin, D. (2010). Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, inferred from InSAR analysis—II. Co-eruptive deflation, July-August 2008. Journal of Geophysical Research, 115, 13. doi:10.1029/2009JB006970.

  • Lu, Z., Mann, D., & Freymueller, J. (1998). Satellite radar interferometry measures deformation at Okmok Volcano. Eos, Transactions, American Geophysical Union American Geophysical Union, 79, 461–468.

    Google Scholar 

  • Lu, Z., Wicks, C., Dzurisin, D., Thatcher, W., Freymueller, J., McNutt, S., et al. (2000a). Aseismic inflation of Westdahl volcano, Alaska, revealed by satellite radar interferometry. Geophysical Research Letters, 27, 1567–1570.

    Google Scholar 

  • Lu, Z., Wicks, C., Power, J., & Dzurisin, D. (2000b). Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 105, 21,483–21,496.

    Google Scholar 

  • Lu, Z., Mann, D., Freymueller, J., & Meyer, D. (2000c). Synthetic aperture radar interferometry of Okmok volcano, Alaska—radar observations. Journal of Geophysical Research, 105, 10791–10806.

    Google Scholar 

  • Lu, Z., Power, J., McConnell, V., Wicks, C., & Dzurisin, D. (2002a). Pre-eruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska, 1993–2000. Journal of Geophysical Research, 107(B11) (2266), 13. doi:10.1029/2001JB000970.

  • Lu, Z., Wicks, C., Dzurisin, D., Power, J., Moran, S., & Thatcher, W. (2002b). Magmatic inflation at a dormant stratovolcano—1996–98 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 107 (2134), 13. doi:10.1029/2001JB000471.

  • Lu, Z., Masterlark, T., Power, J., Dzurisin, D., & Wicks, C. (2002c), Subsidence at Kiska volcano, western Aleutians, detected by satellite radar interferometry. Geophysical Research Letters, 29, doi:10.1029/2002GL014948.

  • Lu, Z., Fielding, E., Patrick, M., & Trautwein, C. (2003a). Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: the 1997 eruption of Okmok volcano, Alaska. IEEE Transactions on Geoscience and Remote Sensing, 41, 1428–1436.

    Google Scholar 

  • Lu, Z., Masterlark, T., Dzurisin, D., Rykhus, R., & Wicks, C. (2003b). Magma supply dynamics at Westdahl Volcano, Alaska, modeled from satellite radar interferometry. Journal of Geophysical Research, 108, 2354. doi:10.1029/2002JB002311.

    Google Scholar 

  • Lu, Z., Rykhus, R., Masterlark, T., & Dean, K. (2004). Mapping recent lava flows at Westdahl volcano, Alaska, using radar and optical satellite imagery. Remote Sensing of Environment, 91, 345−353.

    Google Scholar 

  • Lu, Z., Masterlark, T., & Dzurisin, D. (2005a). Interferometric synthetic aperture radar (InSAR) study of Okmok volcano, Alaska, 1992–2003—magma supply dynamics and post-emplacement lava flow deformation. Journal of Geophysical Research, 110 (B02403). doi:10.1029/2004JB003148.

  • Lu, Z., Wicks, C., Kwoun, O., Power, J., & Dzurisin, D. (2005b). Surface deformation associated with the March 1996 earthquake swarm at Akutan Island, Alaska, revealed by C-band ERS and L-band JERS radar interferometry. Canadian Journal of Remote Sensing, 31(1), 7–20.

    Google Scholar 

  • Lu, Z., Dzurisin, D., Wicks, C., Power, J., Kwoun, O., & Rykhus, R. (2007). Diverse deformation patterns of Aleutian volcanoes from satellite interferometric synthetic aperture radar (InSAR). In J. Eichelberger, E. Gordeev, P. Izbekov, M. Kasahara, & J. Lees (Eds.), Volcanism and subduction: The Kamchatka region (Vol. 172, pp. 249–261). American Geophysical Union, Geophysical Monograph.

    Google Scholar 

  • Lu, Z., Dzurisin, D., Biggs, J., Wicks, C., Jr., & McNutt, S. (2010). Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, inferred from InSAR analysis—I. Inter-eruptive deformation, 1997–2008. Journal of Geophysical Research, 115, doi:10.1029/2009JB006969.

  • Luedke, R. G., & Smith, R. L. (1986). Map showing distribution, composition, and age of late Cenozoic volcanic centers in Alaska. U.S. Geological Survey Miscellaneous Investigations 1091-F. 3 sheets, scale 1:1,000,000.

    Google Scholar 

  • Madsen, S., Martin, J., & Zebker, H. (1995). Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system. IEEE Transactions on Geoscience and Remote Sensing, 33, 383–391.

    Google Scholar 

  • Mangan, M. T., Cashman, K. V., & Newman, S. (1993). Vesiculation of basaltic magma during eruption. Geology, 21, 157–160.

    Google Scholar 

  • Mangan, M., Miller, T., Waythomas, C., Trusdell, F., Calvert, A., & Layer, P. (2009). Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake volcanic center, eastern Aleutian arc. Earth and Planetary Science Letters, 287(3–4), 363–372. Retrieved from http://dx.doi.org/10.1016/j.epsl.2009.08.018.

  • Mann, D., & Freymueller, J. (2003). Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska. Journal of Geophysical Research, 108(B2), 2108. doi:10.1029/2002JB001925.

    Google Scholar 

  • Mann, D., Freymueller, J., & Lu, Z. (2002). Deformation associated with the 1997 eruption of Okmok volcano, Alaska. Journal of Geophysical Research, 107, 7–13. doi:10.1029/2001JB000163.

    Google Scholar 

  • Marsh, B. D. (1990). Atka, Central Aleutian Islands. In C. A. Wood & J. Kienle (Eds.), Volcanoes of North America (pp. 29–31). New York: Cambridge University Press.

    Google Scholar 

  • Massmann, F. H. (1995). Information for ERS PRL/PRC users: Technical note. Potsdam: GeoForschungsZentrum. (German Processing and Archiving Facility (D-PAF)).

    Google Scholar 

  • Massmann F.-H., Reigber C. H., König R., Raimondo, J. C., & Rajasenan, C. (1994). ERS-1 orbit information provided by D-PAF. In Proceedings of Second ERS-1 Symposium ESA SP-361, Hamburg, pp. 765–770.

    Google Scholar 

  • Massonnet, D., & Feigl, K. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36, 441–500.

    Google Scholar 

  • Masterlark, T. (2007). Magma intrusion and deformation predictions—sensitivities to the Mogi assumptions. Journal of Geophysical Research, 112, 14. doi:10.1029/2006JB004860.

  • Masterlark, T., & Lu, Z. (2004). Transient volcano deformation sources imaged with InSAR—application to Seguam island. Journal of Geophysical Research, 109, B01401. doi:10.1029/2003JB002568.

  • Masterlark, T., Lu, Z., & Rykhus, R. (2006). Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR FEMs, and an adaptive mesh algorithm. Journal of Volcanology and Geothermal Research, 150, 186–201.

    Google Scholar 

  • Mastin, L. G., Roeloffs, E., Beeler, N. M., & Quick, J. E. (2008). Constraints on the size, overpressure, and volatile content of the Mount St. Helens magma system from geodetic and dome-growth measurements during the 2004–2006+eruption, chapter 22. In D. R. Sherrod, W. E. Scott, & P. H. Stauffer (Eds.), A volcano rekindled: The renewed eruption of Mount St. Helens, 20042006 (pp. 461–488). U.S. Geological Survey Professional Paper 1750.

    Google Scholar 

  • McConnell, V. R., Begét, J. E., Roach, A. L., Bean, K. W., & Nye, C. L. (1997). Geologic map of the Makushin volcanic field, Unalaska Island, Alaska. Fairbanks: Alaska Division of Geological & Geophysical Surveys. (Report of Investigations 97-20, 2 sheets, scale 1:63,360.).

    Google Scholar 

  • McGimsey, R. G., Neal, C. A., & Doukas, M. P. (1995). Volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory 1992 (p. 26). U.S. Geological Survey Open-File Report OF 95-83.

    Google Scholar 

  • McGimsey, R. G., & Neal, C. (1996). 1995 volcanic activity in Alaska and Kamchatka—summary of events and response of the Alaska Volcano Observatory (p. 22). U.S. Geological Survey Open-File Report OF 96-0738.

    Google Scholar 

  • McGimsey, R. G., Neal, C. A., Dixon, J. P., Malik, N., & Chibisova, M. (2011). 2007 volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory (p. 110). U.S. Geological Survey Scientific Investigations Report 2010-5242. Retrieved from http://pubs.usgs.gov/sir/2010/5242/

  • McGimsey, R. G., Neal, C. A., Dixon, J. P., & Ushakov, S. (2007). 2005 volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory (p. 94). U.S. Geological Survey Scientific Investigations Report 2007-5269. Retrieved from http://pubs.usgs.gov/sir/2007/5269/

  • McGimsey, R. G., Neal, C. A., & Girina, O. (2003). 1998 volcanic activity in Alaska and Kamchatka: Summary of events and response of the Alaska Volcano Observatory. USGS Open-File Report 03-423.

    Google Scholar 

  • McGimsey, R. G., Neal, C. A., & Girina, O. (2004). 2001 volcanic activity in Alaska and Kamchatka: Summary of events and response of the Alaska Volcano Observatory (p. 53). U.S. Geological Survey Open-File Report OF 2004-1453.

    Google Scholar 

  • McGimsey, R. G., & Wallace, K. L. (1999). 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory (p. 42). U.S. Geological Survey Open-File Report OF 99-0448.

    Google Scholar 

  • McNutt, S. R. (1985). The eruptive activity, seismicity, and velocity structure of Pavlof volcano, eastern Aleutians. Ph.D. dissertation, Columbia University unpublished, p. 214.

    Google Scholar 

  • McNutt, S. R. (1999). Eruptions of Pavlof volcano, Alaska, and their possible modulation by ocean load and tectonic stresses: re-evaluation of the hypothesis based on new data from 1984–1998. Pure and Applied Geophysics, 155(2), 701–712.

    Google Scholar 

  • McNutt, S., Rymer, H., & Stix, J. (2000). Synthesis of volcano monitoring. In H. Sigurdsson (Ed.) Encyclopedia of volcanoes (pp. 1165–1184). San Diego: Academic Press.

    Google Scholar 

  • McTigue, D. F. (1987). Elastic stress and deformation near a finite spherical magma body—resolution of the point source paradox. Journal of Geophysical Research, 92, 12,931–12,940.

    Google Scholar 

  • Miller, T. P. (2004). Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska (p. 19). U.S. Geological Survey Open-File Report 2004–1009. 2 plates, scale 1:63,360.

    Google Scholar 

  • Miller, T. P., Chertkoff, D. G., Eichelberger, J. C., & Coombs, M. L. (1999). Mount Dutton volcano, Alaska: Aleutian arc analog to Unzen volcano, Japan. In S. Nakada, J. C. Eichelberger, & H. H. Shimizu (Eds.), Unzen eruption: Magma ascent and dome growth. Journal of Volcanology and Geothermal Research, 89(1), 275–301.

    Google Scholar 

  • Miller, T.P., & Chouet, B.A. (Eds.). (1994). The 19891990 eruptions of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62(1-4), 520. (special issue).

    Google Scholar 

  • Miller, D. M., Langmuir, C. H., Goldstein, S. L., & Franks, A. L. (1992). The importance of parental magma composition to calc-alkaline and tholeiitic evolution: evidence from Unmak Island in the Aleutians. Journal of Geophysical Research, 97, 321–344.

    Google Scholar 

  • Miller, T. P., McGimsey, R. G., Richter, D. H., Riehle, J. R., Nye, C. J., Yount, M. E., & Dumoulin, J. A. (1998). Catalog of the historically active volcanoes of Alaska (p. 104). U.S. Geological Survey Open-File Report 98-582.

    Google Scholar 

  • Miller, T. P., & Smith, R. L. (1976a). “New” volcanoes in the Aleutian volcanic arc, In E. H. Cobb (Ed.), The United States Geological Survey in Alaska: Accomplishments during 1975 (p. 11). U.S. Geological Survey Circular C 0733.

    Google Scholar 

  • Miller, T. P., & Smith, R. L. (1976b). Two caldera-forming eruptions on Umnak Island, eastern Aleutian Islands (abstract), In E. H. Cobb (Ed.), The United States Geological Survey in Alaska: accomplishments during 1975 (p. 45). U.S. Geological Survey Circular C 0733.

    Google Scholar 

  • Miller, T. P., & Smith, R. L. (1977). Spectacular mobility of ash flows around Aniakchak and Fisher calderas, Alaska. Geology, 5(3), 173–176.

    Google Scholar 

  • Miller, T. P., & Smith, R. L. (1987). Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska. Geology, 15, 434–438.

    Google Scholar 

  • Miller, T. P., Waythomas, C. F., & Gardner, J. E. (2002). Possible multiple late Quaternary caldera-forming eruptions at Mount Veniaminof volcano, Alaska. Eos, Transactions, American Geophysical Union, 83, 47. (Abstract V11A-1376.)

    Google Scholar 

  • Miller, T. P., Waythomas, C. F., & Nye, C. J. (2003). Preliminary geologic map of Kanaga Volcano, Alaska. U.S. Geological Survey Open-File Report OF 03-0113, unpaged. 2 sheets, scale 1:20,000.

    Google Scholar 

  • Miyagi, Y., Freymueller, J. T., Kimata, F., Sato, T., & Mann, D. (2004). Surface deformation caused by shallow magmatic activity at Okmok volcano, Alaska, detected by GPS campaigns, 2000–2002. Earth, Planets and Space, 56(10), e29–e32.

    Google Scholar 

  • Mogi, K. (1958). Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bulletin of the Earthquake Research Institute, University of Tokyo, 36, 99–134.

    Google Scholar 

  • Montanaro, C., & Beget, J. (2011). Volcano collapse along the Aleutian Ridge (western Aleutian Arc). Natural Hazards and Earth System Sciences, 11, 715–730. Retrieved from http://www.nat-hazards-earth-syst-sci.net/11/715/2011/nhess-11-715-2011.pdf

  • Moran, S. C. (2003). Multiple seismogenic processes for high-frequency earthquakes at Katmai National Park, Alaska—evidence from stress tensor inversions of fault-plane solutions. Bulletin of the Seismological Society of America, 93, 94–108.

    Google Scholar 

  • Moran, S. C., Kwoun, O., Masterlark, T., & Lu, Z. (2006). On the absence of InSAR-detected volcano deformation spanning the 1995–1996 and 1999 eruptions of Shishaldin volcano, Alaska. Journal of Volcanology and Geothermal Research, 150(1–3), 119–131.

    Google Scholar 

  • Moran, S. C., Stihler, S. D., & Power, J. A. (2002). A tectonic earthquake sequence preceding the April–May 1999 eruption of Shishaldin Volcano, Alaska. Bulletin of Volcanology, 64, 520–524.

    Google Scholar 

  • Motyka, R. J. and Nye, C. J. (Eds.) (1988). A geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay valley, Akutan Island, Alaska (p. 115). Alaska Division of Geological & Geophysical Surveys Report of Investigation 88-3, 2 sheets, scale 1:3937.

    Google Scholar 

  • Motyka, R. J., Liss, S. A., Nye, C. J., & Moorman, M. A. (1993a) Geothermal resources of the Aleutian arc (p. 17). Alaska Division of Geological and Geophysical Surveys Professional Report 0114, 4 sheets, scale 1:1,000,000.

    Google Scholar 

  • Motyka, R., Nye, C., Turner, D., & Liss, S. (1993b). The Geyser Bight geothermal area Umnak Island, Alaska. Geothermics, 22, 301–327.

    Google Scholar 

  • Moxey, L., Dehn, J., Papp, K. R., Patrick, M. R., & Guritz, R. (2001). The 1997 eruption of Okmok volcano, Alaska, a synthesis of remotely sensed data. Eos (American Geophysical Union Transactions), 82 (47), 1375.

    Google Scholar 

  • Nakamura, K. (1977). Volcanoes as possible indicators of tectonic stress orientation: Principle and proposal. Journal of Volcanology and Geothermal Research, 2(1), 1–16.

    Google Scholar 

  • Nakamura, K., Jacob, K. H., & Davies, J. N. (1977). Volcanoes as possible indicators of tectonic stress orientation: Aleutians and Alaska. Pure and Applied Geophysics, 115, 87–112.

    Google Scholar 

  • Nakamura, K., Plafker, G., Jacob, K. H., & Davies, J. N. (1980). A tectonic stress trajectory map of Alaska using information from volcanoes and faults. Bulletin of the Earthquake Research Institute, 55, 89–100.

    Google Scholar 

  • National Aeronautics and Space Administration (NASA). (1999). Landsat 7 science data users handbook. http://ltpww.gsfc.nasa.gov/IAS/hadbook/hadbook_toc.html

  • Neal, C. A., Doukas, M. P., & McGimsey, R. G. (1995). 1994 Volcanic activity in Alaska and Kamchatka: Summary of events and responses to the Alaska Volcano Observatory. USGS Open File Report 95-271, 1995.

    Google Scholar 

  • Neal, C. A., Larsen, J. F., & Schaefer, J. (2009b). The July–August 2008 hydrovolcanic eruption of Okmok Volcano, Umnak Island, Alaska. Alaska Geological Society Newsletter, 39(5) 1–3.

    Google Scholar 

  • Neal, C., & McGimsey, R. G. (1997). 1996 volcanic activity in Alaska and Kamchatka: Summary of events and response of the Alaska Volcano Observatory (p. 34). U.S. Geological Survey Open-File Report OF 97-0433.

    Google Scholar 

  • Neal, C. A., McGimsey, R. G., Dixon, J. P., Manevich, A., & Rybin, A. (2009a). 2006 volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory (p. 102). U.S. Geological Survey Scientific Investigations Report 2008-5214. Retrieved from http://pubs.usgs.gov/sir/2008/5214/

  • Neal, C. A., McGimsey, R. G., Dixon, J., & Melnikov, D. (2005). 2004 volcanic activity in Alaska and Kamchatka: Summary of events and response of the Alaska Volcano Observatory. U.S. Geological Survey Open-File Report 2005-1308.

    Google Scholar 

  • Neal, C. A., McGimsey, R. G., Dixon, J. P., Nuzhdaev, A. A., & Chibisova, M. (2011). 2008 volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory. U.S. Geological Survey Scientific Investigations Report 2010–5243.

    Google Scholar 

  • Neal, C. A., McGimsey, R. G., & Doukas, M. P. (1996). 1993 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory. U.S. Geological Survey Open-File Report 96-24.

    Google Scholar 

  • Neal, C. A., McGimsey, R. G., Miller, T. P., Riehle, J. R., & Waythomas, C. F. (2001). Preliminary volcano-hazard assessment for Aniakchak volcano, Alaska. USGS Open-File Report 00-519.

    Google Scholar 

  • Neill, O. K. (2013). Petrologic and geochemical tracers of magmatic movement in volcanic arc systems—case studies from the Aleutian Islands and Kamchatka, Russia. Doctoral dissertation, University of Alaska, Fairbanks, p. 190.

    Google Scholar 

  • Nelson, W. H. (1956). Geology of Segula, Davidof and Khvostof Islands, Alaska: Investigations of Alaskan Volcanoes. United States Geological Survey Bulletin 1028-K, p. 266.

    Google Scholar 

  • Newhall, C. G., & Dzurisin, D. (1988) Historical unrest at large calderas of the world (p. 1108). U.S. Geological Survey Bulletin 1855.

    Google Scholar 

  • Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research Oceans and Atmospheres, 87, 1231–1238.

    Google Scholar 

  • Nicholson, R. S. (2003). The 1931 eruption of Aniakchak volcano, Alaska: Deposit characteristics and eruption dynamics. MS Thesis, University of Alaska Fairbanks, Fairbanks.

    Google Scholar 

  • Nicholson, R. S., Gardner, J. E., & Neal, C. A. (2011). Variations in eruption style during the 1931 A.D. eruption of Aniakchak volcano, Alaska. Journal of Volcanology and Geothermal Research,. doi:10.1016/j.jvolgeores.2011.08.002.

    Google Scholar 

  • Nicolaysen, K. E., Myers, J. D., & Frost, C. D. (1994). Geochemical and isotopic evidence for magma recharge, Yunaska Island, central Aleutian arc, Alaska (abstract). Eos (American Geophysical Union Transactions), 75(16), 366.

    Google Scholar 

  • Nicolaysen, K. E., Myers, J. D., Linneman, S. R., & Lamb, D. (1992). Geologic relations of the Yunaska volcanic complex, central Aleutian arc (abstract). Eos (American Geophysical Union Transactions), 73(43), 645. 1992 Fall Meeting.

    Google Scholar 

  • Nye, C. J. (1983). Petrology and geochemistry of Okmok and Wrangell volcanoes, Alaska. University of California, Santa Cruz. Ph.D. Dissertation, p. 208.

    Google Scholar 

  • Nye, C. J., Queen, L. D., & Motyka, R. J. (1984). Geologic map of the Makushin geothermal area, Unalaska Island, Alaska (p. 2). Alaska Division of Geological & Geophysical Surveys Report of Investigations RI 84-3.

    Google Scholar 

  • Nye, C. J. (1990). Makushin: Eastern Aleutian Islands, In C. A. Wood & J. Kienle (Eds.), Volcanoes of North America (pp. 41–43). Cambridge: Cambridge University Press.

    Google Scholar 

  • Nye, C. J., Neal, C. A., & McGimsey, R. G. (1993). Extreme and abrupt transition from tholeiitic to calcalkaline volcanism at Aniakchak volcano, eastern Aleutian arc. Eos, Transactions American Geophysical Union, 74(43), 674.

    Google Scholar 

  • Nye, C. J., Harbin, M. L., Miller, T. P., Swanson, S. E., & Neal, C. A. (1995). Whole-rock major- and trace-element chemistry of 1992 ejecta from Crater Peak, Mount Spurr volcano, Alaska, In T. E. C. Keith (Ed.), The 1992 eruptions of Crater Peak Vent, Mount Spurr volcano, Alaska (pp. 119–128). U.S. Geological Survey Bulletin B 2139.

    Google Scholar 

  • Nye, C. J., Keith, T. E. C., Eichelberger, J. C., Miller, T. P., McNutt, S. R., Moran, S. C., et al. (2002). The 1999 eruption of Shishaldin Volcano, Alaska: Monitoring a distant eruption. Bulletin of Volcanology, 64, 507–519.

    Google Scholar 

  • Nye, C. J., & Turner, D. L. (1990). Petrology, geochemistry, and age of the Spurr volcanic complex, eastern Aleutian arc. Bulletin of Volcanology, 52(3), 205–226.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Patrick, M. R., Dehn, J., Papp, K. R., Lu, Z., Moxey, L., Dean, K. G., et al. (2003). The 1997 eruption of Okmok Volcano, Alaska: A synthesis of remotely sensed imagery. Journal of Volcanology and Geothermal Research, 127, 89–107.

    Google Scholar 

  • Pauk, B. A., Jackson, M., Feaux, K., Mencin, D., & Bohnenstiehl, K. (2010). The Plate Boundary Observatory permanent Global Positioning System network on Augustine Volcano before and after the 2006 eruption. In J. A. Power, M. L. Coombs, & J. T. Freymueller (Eds.), The 2006 eruption of Augustine Volcano, Alaska (pp. 467–477). U.S. Geological Survey Professional Paper 1769.

    Google Scholar 

  • Pauk, B. A., Power, J. A., Lisowski, M., Dzurisin, D., Iwatsubo, E. Y., & Melbourne, T. (2001). Global Positioning System (GPS) survey of Augustine Volcano, Alaska, August 3–8, 2000: Data processing, geodetic coordinates and comparison with prior geodetic surveys (p. 20). U.S. Geological Survey Open-File Report 01–099.

    Google Scholar 

  • Pesicek, J., Thurber, C., DeShon, H., Prejean, S., & Zhang, H. (2008). Three-dimensional P-wave velocity structure and precise earthquake relocation at Great Sitkin volcano, Alaska. Bulletin of the Seismological Society of America, 98, 2428–2448. doi:10.1785/0120070213.

    Google Scholar 

  • Power, J. A., Coombs, M. L., & Freymueller, J. T. (2010). Scientific investigations of Augustine Volcano, Alaska, following the 2006 eruption (p. 667). U.S. Geological Survey Professional Paper 1769.

    Google Scholar 

  • Power, J. A., & Iwatsubo, E. Y. (1998). Measurements of slope distances and zenith angles at Augustine Volcano, Alaska, 1986, 1988, and 1989 (p. 17). U.S. Geological Survey Open-File Report 98–0145.

    Google Scholar 

  • Power, J. A., Jolly, A. D., Nye, C. J., & Harbin, M. L. (2002). A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence. Bulletin of Volcanology, 64, 206-218.

    Google Scholar 

  • Power, J. A., Lahr, J. C., Page, R. A., Chouet, B. A., Stephens, C. D., Harlow, D. H., & Davies, J. N. (1994). Seismic evolution of the 1989–1990 eruption sequence of Redoubt Volcano, Alaska. In T. P. Miller, & B. A.Chouet (Eds.), The 1989–1990 eruptions of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62, 69–94.

    Google Scholar 

  • Power, J. A., & Lalla, D. J. (2010). Seismic observations of Augustine Volcano, 1970–2007, chapter 1. In J. A. Power, M. L. Coombs, & J. T. Freymueller (Eds.), The 2006 eruption of Augustine Volcano, Alaska (pp. 3–40). U.S. Geological Survey Professional Paper 1769.

    Google Scholar 

  • Power, J. A., Nye, C. J., Coombs, M. L., Wessels, R. L., Cervelli, P. F., Dehn, J., et al. (2006). The reawakening of Alaska’s Augustine Volcano. Eos Transactions American Geophysical Union, 87(37), 373–377.

    Google Scholar 

  • Power, J. A., Paskievitch, J. F., Richter, D. H., & McGimsey, R. G. (1996). 1996 seismicity and ground deformation at Akutan volcano, Alaska (abstract). Eos, Transactions of the American Geophysical Union, 77(46), F514. Fall Meeting Supplement.

    Google Scholar 

  • Power, J. A., Stihler, S. D., White, R. A., & Moran, S. C. (2004). Observations of deep long-period (DLP) seismic events beneath Aleutian Arc volcanoes: 1989–2002. Journal of Volcanology and Geothermal Research, 138, 243–266.

    Google Scholar 

  • Prejean, S. G., & Hill, D. P. (2009). Dynamic triggering of earth quakes. In R. A. Meyers (Ed.) Encyclopedia of complexity and system science, New York: Springer.

    Google Scholar 

  • Prejean, S. G., Werner, C. A., Buurman, H., Doukas, M. P., Kelly, P. J., Kern, C. et al. (2012). Seismic and gas analyses imply magmatic intrusion at Iliamna Volcano, Alaska in 2012 (abs). American Geophysical Union, Fall Meeting, Abstract V53B-2826, San Francisco, December 3–7, 2012.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T, & Flannery, B. P. (2007). Numerical recipes in C: The art of scientific computing (3rd ed., p. 994). Cambridge: Cambridge University Press.

    Google Scholar 

  • Price, E. J. (2004). Dynamic deformation of Seguam Island, Aleutian Islands, Alaska, 1993–2000: Implications for magmatic and hydrothermal processes. Journal of Geophysical Research, 109(4), 15. doi:10.1029/2003JB002671.

  • Reeder, J. W. (1984). Okmok. Bulletin of Volcanic Eruptions, 22, 92–94.

    Google Scholar 

  • Reeder, J. W. (1988). Korovin. In Annual report of the world volcanic eruptions in 1985. Bulletin of Volcanic Eruptions, 25, 55–56.

    Google Scholar 

  • Reeder, J. W., & Doukas, M. (1994). Westdahl. In Annual report of the world volcanic eruptions in 1991. Bulletin of Volcanic Eruptions, 31, 83–86.

    Google Scholar 

  • Richter, D. H., Rosenkrans, D. S., & Steigerwald, M. J. (1995). Guide to the volcanoes of the western Wrangell Mountains, Alaska: Wrangell-St. Elias National Park and Preserve (p. 31). U.S. Geological Survey Bulletin 2072.

    Google Scholar 

  • Richter, D. H., Smith, J. G., Ratte, J. C., & Leeman, W. P. (1984). Shield volcanoes in the Wrangell Mountains, Alaska. In K. M. Reed & S. Bartsch-Winkler (Eds.), The United States Geological Survey in Alaska: Accomplishments during 1982 (pp. 71–75). U.S. Geological Survey Circular C 0939.

    Google Scholar 

  • Richter, D. H., Waythomas, C. F., McGimsey, R. G. & Stelling, P. L. (1998). Geologic map of Akutan Island, Alaska (p. 22). U.S. Geological Survey Open-File Report 98-135. +1 plate.

    Google Scholar 

  • Riehle, J. R. (1985). A reconnaissance of the major Holocene tephra deposits in the upper Cook Inlet region, Alaska. Journal of Volcanology and Geothermal Research, 26(1–2), 37–74.

    Google Scholar 

  • Riehle, J. R., Kienle, J., & Emmel, K. S. (1981). Lahars in the Crescent River valley, lower Cook Inlet, Alaska (p. 10). Alaska Division of Geological & Geophysical Surveys Geological Report 53.

    Google Scholar 

  • Riehle, J. R., Meyer, C. E., Ager, T. A., Kaufman, D. S., & Ackerman, R. E. (1987). The Aniakchak tephra deposit, a late Holocene marker horizon in western Alaska. In T. D. Hamilton, & J. P. Galloway (Eds.), Geologic studies in Alaska by the U.S. Geological Survey during 1986 (pp. 19–22). U.S. Geological Survey Circular 998.

    Google Scholar 

  • Riehle, J. R., Meyer, C. E., & Miyaoka, R. T. (1999). Data on Holocene tephra (volcanic ash) deposits in the Alaska Peninsula and lower Cook Inlet region of the Aleutian volcanic arc, Alaska (p. 5). U.S. Geological Survey Open-File Report OF 99-0135.

    Google Scholar 

  • Rivalta, E., & Segall, P. (2008). Magma compressibility and the missing source for some dike intrusions. Geophysical Research Letters, 35, L04306. doi:10.1029/2007GL032521.

    Google Scholar 

  • Roach, A. L. (1997.) Crystal clots in the flank vents and lavas of the Makushin volcanic field: implications for cumulate entrainment. University of Alaska Fairbanks unpublished M.S. thesis, p. 126.

    Google Scholar 

  • Roman, D. C. & Power, J. A. (2011). Mechanism of the 1996–97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska. In S. C. Moran, C. G. Newhall, & D. C. Roman (Eds.), Failed eruptions: Late-stage cessation of magma ascent. Bulletin of Volcanology, 73 (2), 143–153.

    Google Scholar 

  • Roman, D. C., Power, J. A., Moran, S. C., Cashman, K. V., Doukas, M. P., Neal, C. A. et al. (2004). Evidence for dike emplacement beneath Iliamna Volcano, Alaska in 1996. Journal of Volcanology and Geothermal Research, 130, 265–284.

    Google Scholar 

  • Rose, W. I., Kostinski, A. B., & Kelley, L. (1995). Real-time C-band radar observations of 1992 eruption clouds from Crater Peak, Mount Spurr Volcano, Alaska. In T. E. C. Keith (Ed.), The 1992 eruptions of Crater Peak vent, Mount Spurr, Alaska (pp. 19–26). U.S. Geological Survey Bulletin 2139.

    Google Scholar 

  • Rosen, P. A., Hensley, S., Li, F., Joughin, I., Madsen, S., & Goldstein, D. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.

    Google Scholar 

  • Rosen, P., Hensley, S., Zebker, H., Webb, F. H., & Fielding, E. J. (1996). Surface deformation and coherence measurements of Kīlauea volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101, 23109–23125.

    Google Scholar 

  • Rowland, S. K., MacKay, M. E., Garbeil, H., & Mouginis-Mark, P. J. (1999). Topographic analyses of Kīlauea Volcano, Hawaii, from interferometric airborne radar. Bulletin of Volcanology, 61, 1–14.

    Google Scholar 

  • Rowland, S. K., Smith, G. A., & Mouginis-Mark, P. J. (1994). Preliminary ERS-1 observations of Alaskan and Aleutian volcanoes. Remote Sensing of Environment, 48, 358–369.

    Google Scholar 

  • Rubin, A. M. (1992). Dike-induced faulting and graben subsidence in the volcanic rift zones. Journal of Geophysical Research, 97, 1839–1858.

    Google Scholar 

  • Ruppert, N. A., Prejean, S., & Hansen, R. A. (2011). Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska—earthquake locations and source parameters. Journal of Geophysical Research, 116 (B00B07), 18. doi:10.1029/2010JB007435.

  • Sabins, F. F. (1997). Remote Sensing Principles and Interpretation (3rd ed.). New York: W.H. Freeman and Company.

    Google Scholar 

  • Sandwell, D. T., Myer, D., Mellors, R., Shimada, M., Brooks, B., & Foster, J. (2008). Accuracy and resolution of ALOS interferometry: Vector deformation maps of the Father’s Day intrusion at Kīlauea. IEEE Transactions on Geosciences and Remote Sensing, 46, 3524–3534.

    Google Scholar 

  • Schaefer, J. R. (2011) The 2009 eruption of Redoubt Volcano, Alaska (p. 45). Alaska Division of Geological & Geophysical Surveys Report of Investigation 2011-5. Retrieved from http://www.dggs.alaska.gov/pubs/id/23123

  • Schaefer, J. R., Scott, W. E., Evans, W. C., Jorgenson, J., McGimsey, R. G., & Wang, B. (2008). The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results. Geochemistry Geophysics Geosystems, 9, Q07018. doi:10.1029/2007GC001900.

  • Schaefer, J. R., Scott, W. E., Evans, W. C., Wang, B., & McGimsey, R. G. (2011b). Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 20042011 (p. 25). Alaska Division of Geological & Geophysical Surveys Report of Investigation 2011-6, 1 DVD.

    Google Scholar 

  • Schmidt, D., & Bürgmann, R. (2003). Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research, 108 (B9), 2416. doi:10.1029/2002JB002267.

  • Schneider, D. J., Rose, W. I., & Kelley, L. (1995). Tracking of 1992 eruption clouds from Crater Peak vent of Mount Spurr Volcano, Alaska, using AVHRR. In T. E. C. Keith (Ed.), The 1992 eruption of Crater Peak vent, Mount Spurr Volcano Alaska. U.S. Geological Survey Bulletin. 2139, 27–35.

    Google Scholar 

  • Scott, W. E., Nye, C. J., Waythomas, C. F., & Neal, C. A. (2010). August 2008 eruption of Kasatochi Volcano, Aleutian Islands, Alaska: Resetting an island landscape: Arctic. Antarctic, and Alpine Research, 42(3), 250–259. doi:10.1657/1938-4246-42.3.250.

    Google Scholar 

  • Sedlacek, W. A., Mroz, E. J., & Heiken, G. (1981). Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ‘ambient’ aerosol by a poorly documented volcanic eruption. Geophysical Research Letters, 8, 761–764.

    Google Scholar 

  • Self, S., Kienle, J., & Huot, J.-P. (1980). Ukinrek Maars, Alaska: II, Deposits and formation of the 1977 craters. Journal of Volcanology and Geothermal Research, 7, 39–65.

    Google Scholar 

  • Siebert, L., Simkin, T., & Kimberly, P. (2010). Volcanoes of the world (3rd ed., p. 568). Washington: University of California Press and Smithsonian Institution.

    Google Scholar 

  • Simons, F. S., & Mathewson, D. E. (1955). Geology of Great Sitkin Island, Alaska. In investigations of Alaskan volcanoes. U.S. Geological Survey Bulletin , B1028-B, 21–43. 1 sheet, scale 1:50,000.

    Google Scholar 

  • Singer, B. S., Meyers, J. D., & Frost, C. D. (1992). Mid-Pleistocene lavas from Seguam volcanic center, central Aleutian arc—closed-system fractional crystallization of a basalt to rhyodacite eruptive suite. Contributions to Mineralogy and Petrology, 110, 87–112.

    Google Scholar 

  • Smith, S. J. (2005). Chronologic multisensor assessment for Mount Cleveland, Alaska from 2000 to 2004 focusing on the 2001 eruption. University of Alaska Fairbanks M.S. thesis, p. 142. Retrieved from http://www.avo.alaska.edu/downloads/

  • Smithsonian Institution. (1987a). Atka. Scientific Event Alert Network Bulletin. 12 (03), not paginated.

    Google Scholar 

  • Smithsonian Institution (1987b). Semisopochnoi. Scientific Event Alert Network Bulletin, 12 (04), unpaged.

    Google Scholar 

  • Smithsonian Institution (1993). Atka. Global Volcanism Network Bulletin, 18 (11), unpaged.

    Google Scholar 

  • Smithsonian Institution (1995a). Makushin. Global Volcanism Network Bulletin, 20 (01), unpaged.

    Google Scholar 

  • Smithsonian Institution. (1995b). Atka. Global Volcanism Network Bulletin. 20 (05), not paginated.

    Google Scholar 

  • Smithsonian Institution (1996). Atka. Global Volcanism Network Bulletin, 21(06), unpaged.

    Google Scholar 

  • Smithsonian Institution (1998), Atka. Global Volcanism Network Bulletin, 23(06), unpaged.

    Google Scholar 

  • Smithsonian Institution. (2006). Atka. Bulletin of the Global Volcanism Network. 31 (11). Retrieved from http://www.volcano.si.edu/world/volcano.cfm?vnum=1101-16-&volpage=var#bgvn_3111

  • Snyder, G. L. (1959). Geology of Little Sitkin Island, Alaska, in investigations of Alaskan volcanoes. U.S. Geological Survey Bulletin, B 1028-H, 169–210. 1 plate, scale 1:20,000.

    Google Scholar 

  • Statz-Boyer, P., Thurber, C., Pesicek, J., & Prejean, S. (2009). High-precision relocation of earthquakes at Iliamna Volcano, Alaska. Journal of Volcanology and Geothermal Research, 184, 323–332.

    Google Scholar 

  • Stauder, W. (1968). Tensional character of earthquake foci beneath the Aleutian trench with relation to sear-floor spreading. Journal of Geophysical Research, 73, 7693–7701.

    Google Scholar 

  • Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609.

    Google Scholar 

  • Stelling, P., Begét, J., Nye, C. J., Gardner, J., Devine, J. D., & George, R. M. M. (2002). Geology and petrology of ejecta from the 1999 eruption of Shishaldin Volcano, Alaska. Bulletin of Volcanology, 64, 548–561.

    Google Scholar 

  • Stelling, P., Gardner, J. E., & Begét, J. (2005). Eruptive history of Fisher Caldera Alaska, USA. Journal of Volcanology and Geothermal Research, 139, 163–183.

    Google Scholar 

  • Stevens, N. F., Wadge, G., Williams, C. A., Morley, J. G., Muller, J. P., Murray, J. B., et al. (2001). Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry. Journal of Geophysical Research, 106, 11293–11313.

    Google Scholar 

  • Symonds, R. B, Poreda, R. J., Evans, W. C., Janik, C. J., & Ritchie, B. E. (2003). Mantle and crustal sources of carbon, nitrogen, and noble gases in cascade-range and Aleutian-arc volcanic gases. USGS Open-File Report 03-436.

    Google Scholar 

  • Tryggvason, E. (1980). Subsidence events in the Krafla area, North Iceland, 1975–1979. Journal of Geophysics, 47, 141–153.

    Google Scholar 

  • Turcotte, D., & Schubert, G. (1982). Geodynamics: Applications of continuum physics to geological problems (p. 450). New York: Wiley.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing, active and passive, From theory to applications (Vol. III, pp. 2,017–2,119). Dedham: Artech House.

    Google Scholar 

  • Wadge, G. (1977). The storage and release of magma on Mount Etna. Journal of Volcanology and Geothermal Research, 2, 361–384.

    Google Scholar 

  • Waite, G. P., & Smith, R. B. (2002). Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. Journal of Geophysical Research, 107(B9), 2177. doi:10.1029/2001JB000586.

  • Waitt, R. B., & Begét, J. E. (2009). Volcanic processes and geology of Augustine Volcano, Alaska (p. 78). U.S. Geological Survey Professional Paper 1762. 2 plates, scale 1:25,000.

    Google Scholar 

  • Waitt, R. B., Mastin, L. G., & Miller, T. P. (1995). Ballistic showers during Crater Peak eruptions of Mount Spurr volcano, summer 1992. In T. E. C. Keith (Ed.), The 1992 eruptions of Crater Peak Vent, Mount Spurr volcano, Alaska. U.S. Geological Survey Bulletin, B 2139, 89–106.

    Google Scholar 

  • Waldron, H. H. (1961). Geologic reconnaissance of Frosty Peak volcano and vicinity, Alaska. U.S. Geological Survey Bulletin 1028-T, 677–708.

    Google Scholar 

  • Wang, H. F. (2000). Theory of linear poroelasticity: With applications to geomechanics (p. 287). Princeton: Princeton University Press.

    Google Scholar 

  • Ward, P. L., Pitt, A. M., & Endo, E. (1991). Seismic evidence for magma in the vicinity of Mt, Katmai, Alaska. Geophysical Research Letters, 18, 1537–1540.

    Google Scholar 

  • Waythomas, C. F., & Miller, T. P. (1999). Preliminary volcano-hazard assessment for Iliamna volcano, Alaska. U.S. Geological Survey Open-File Report 99-373.

    Google Scholar 

  • Waythomas, C. F., & Miller, T. P. (1999). Preliminary volcano-hazard assessment for Iliamna volcano, Alaska (p. 31). U.S. Geological Survey Open-File Report OF 99-0373. 1 sheet, scale unknown.

    Google Scholar 

  • Waythomas, C. F., Miller, T. P., & Beget, J. E. (2000). Record of late Holocene debris avalanches and lahars at Iliamna volcano, Alaska. Journal of Volcanology and Geothermal Research, 104, 97–130.

    Google Scholar 

  • Waythomas, C. F., Miller, T. P., & Mangan, M. T. (2006). Preliminary volcano hazard assessment for the Emmons Lake volcanic center, Alaska. Anchorage, Alaska (p. 33). U.S. Geological Survey, Scientific Investigations Report 2006-5248. 1 sheet, Retrieved from http://www.avo.alaska.edu/pdfs/SIR2006-5248.pdf

  • Waythomas, C., Miller, T., & Nye, C. (2002). Preliminary volcano-hazard assessment for Kanaga volcano, Alaska. U.S. Geological Survey Open-File Report 2002-397.

    Google Scholar 

  • Waythomas, C. F., Miller, T. P., & Nye, C. J. (2003a). Preliminary geologic map of Great Sitkin volcano, Alaska. U.S. Geological Survey Open-File Report OF 03-0036, unpaged. 1 sheet, scale 1:63,360.

    Google Scholar 

  • Waythomas, C. F., Miller, T. P., & Nye, C. J. (2003b). Geology and late Quaternary eruptive history of Kanaga Volcano, a calc-alkaline stratovolcano in the western Aleutian Islands, Alaska. In J. P. Galloway (Ed.), Studies by the U.S. Geological Survey in Alaska, 2001 (pp. 181–197). U.S. Geological Survey Professional Paper PP 1678.

    Google Scholar 

  • Waythomas, C. F., Miller, T. P., & Nye, C. J. (2003c). Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska (p. 25). U.S. Geological Survey Open-File Report OF 03-0112. 1 sheet.

    Google Scholar 

  • Waythomas, C. F., Prejean, S. G., & McNutt, S. R. (2008). Alaska’s Pavlof volcano ends 11-year repose. Eos, Transactions, American Geophysical Union, 89(23), 209–211.

    Google Scholar 

  • Waythomas, C. F., Scott, W. E., & Nye, C. J. (2010a). The geomorphology of an Aleutian volcano following a major eruption—the 7–8 August 2008 eruption of Kasatochi Volcano, Alaska, and its aftermath. Arctic, Antarctic, and Alpine Research, 42(3), 260–275. doi:10.1657/1938-4246-42.3.260.

    Google Scholar 

  • Waythomas, C. F., Scott, W. E., Prejean, S. G., Schneider, D. J., Izbekov, P., & Nye, C. J. (2010b). The 7–8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska. Journal of Geophysical Research, 115(B00B06), 23. doi:10.1029/2010JB007437.

  • Waythomas, C. F., & Waitt, R. B. (1998). Preliminary volcano-hazard assessment for Augustine volcano, Alaska (p. 39). U.S. Geological Survey Open-File Report 98–0106.

    Google Scholar 

  • Werner, C. A., Doukas, M. P., & Kelly, P. J. (2011). Gas emission from failed and actual eruptions from Cook Inlet Volcanoes, Alaska, 1989–2006. Bulletin of Volcanology, 73(2), 155–173. doi:10.1007/s00445-011-0453-4.

    Google Scholar 

  • West, M., Sanchez, J. J., & McNutt, S. R. (2005). Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra earthquake. Science, 308(5725), 1144–1146.

    Google Scholar 

  • White, R., & Rowe, C. (2006). Volcano-tectonic earthquake sequences near active volcanoes and their use in eruption forecasting (abs). Seismological Research Letters, 77(2), 240.

    Google Scholar 

  • Wicks, C. Jr., Dzurisin, D., Ingebritsen, S., Thatcher, W., Lu, Z., & Iverson, J. (2002). Magmatic activity beneath the quiescent three sisters volcanic center, central Oregon Cascade Range, USA. Geophysical Research Letters, 29(7), 26-1–26-4. doi:10.1029/2001GL014205.

  • Wicks C., de la Llera, J. C., Lara L. E., & Lowenstern J. (2011). The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature, 478, 374–377. doi:10.1038/nature10541.

    Google Scholar 

  • Williams, C. A., & Wadge, G. (1998). The effects of topography on magma reservoir deformation models: Application to Mt, Etna and radar interferometry. Geophysical Research Letters, 25, 1549–1552.

    Google Scholar 

  • Wilson, F. H., & Weber, F. R. (2001). Quaternary geology, cold bay and false pass quadrangles, Alaska Peninsula. In L. P. Gough, & F. H. Wilson (Eds.), Geologic studies in Alaska by the U. S. Geological Survey, 1999 (pp. 51–71). U.S. Geological Survey Professional Paper 1633.

    Google Scholar 

  • Wood, C. A., & Kienle, J. (Eds.) (1990). Volcanoes of North America: United States and Canada (p. 354). New York: Cambridge University Press.

    Google Scholar 

  • Wright, T. J., Lu, Z., & Wicks, C. (2003). Source model for the Mw 6.7, 23 October 2002, Nenana Mountain earthquake (Alaska) from InSAR (interferometric synthetic aperture radar). Geophysical Research Letters, 30(18), 1974, doi:10.1029/2003GL018014.

  • Yang, X.-M., Davis, P. M., & Dieterich, J. H. (1988). Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. Journal of Geophysical Research, 93(B5), 4249–4257.

    Google Scholar 

  • Zebker, H. A., Madsen, S. N., Martin, J., Wheeler, K. B., Miller, T., Lou, Y. et al. (1992). The TOPSAR interferometric radar topographic mapping instrument. IEEE Transactions on Geoscience and Remote Sensing. 30, 933–940.

    Google Scholar 

  • Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., & Werner, C. L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research, 99, 19617–19634.

    Google Scholar 

  • Zebker, H., Rosen, P., Hensley, S., & Mouginis-Mark, P. J. (1996). Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements. Geology, 24, 495–498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, Z., Dzurisin, D. (2014). InSAR Imaging of Aleutian Volcanoes. In: InSAR Imaging of Aleutian Volcanoes. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00348-6_6

Download citation

Publish with us

Policies and ethics