Skip to main content

Introduction to Interferometric Synthetic Aperture Radar

  • Chapter
  • First Online:
InSAR Imaging of Aleutian Volcanoes

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

Radar is an acronym for radio detection and ranging, which hints at some of the technique’s uses and capabilities. Radars operate in the microwave portion of the electromagnetic spectrum, which encompasses wavelengths (λ) from 1 meter (m) to 1 mm (mm), or equivalently, frequencies (f ) from 300 megaHertz (MHz) to 300 gigaHertz (GHz). By international convention, the entire radar spectrum is divided into several bands with different designations and uses. Of particular interest here are X-band (f = 8–12 GHz, λ = 2.5–3.75 cm), C-band (f = 4–8 GHz, λ = 3.75–7.5 cm), and L-band (f = 1–2 GHz, λ = 15–30 cm)—the bands used by radar systems in Earth orbit that provide data for our study of how volcanoes deform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is common knowledge that the speed of light, c, is constant in a vacuum. Lesser known is the fact that the propagation speed v of light and other types of electromagnetic waves, including radar waves, is a function of the refractive index n through which they travel: v = c/n. The value of n is 1 for a vacuum, greater than 1 for the troposhere, and less than 1 for the ionosphere. Moist air has a larger refractive index than dry air, so radar signals travel slower through parts of the atmosphere that are laden with water vapor than they do through parts that are drier. Resulting arrival-time delays show up in deformation interferograms as spurious fringes that are referred to as atmospheric delay anomalies or artifacts. Free electrons in the ionosphere “speed up” the radar signal, causing an advance of the signal phase that strongly depends on the signal frequency (Hanssen 2001; Meyer et al. 2006; Meyer 2011).

References

  • Baek, S., Kwoun, O., Braun, A., Lu, Z., & Shum, C. K. (2005). Digital elevation model of King Edward VII Peninsula, West Antarctica, from SAR interferometry and ICESat laser altimetry. IEEE Geoscience and Remote Sensing Letters, 2, 413–417.

    Article  Google Scholar 

  • Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14, R1–54.

    Article  Google Scholar 

  • Bamler, R., & Eineder, M. (2005). Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geoscience Remote Sensor Letter, 2, 151–155.

    Article  Google Scholar 

  • Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & Ware, R. (1992). GPS meteorology—remote sensing of the atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research, 97, 15787–15801.

    Article  Google Scholar 

  • Cervelli, P., Murray, M. H., Segall, P., Aoki, Y., & Kato, T. (2001). Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm of the Izu Peninsula, Japan. Journal of Geophysical Research, 106, 11217–11237.

    Article  Google Scholar 

  • Curlander, J., & McDonough, R. (1991). Synthetic aperture radar systems and signal processing (p. 672). New York: Wiley.

    Google Scholar 

  • Davis, P. M. (1986). Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kīlauea Volcano, Hawaii. Journal of Geophysical Research, 91, 7429–7438.

    Article  Google Scholar 

  • Delaney, P. T., & McTigue, D. F. (1994). Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kīlauea Volcano. Bulletin of Volcanology, 56, 417–424.

    Article  Google Scholar 

  • Emardson, T. R., Simons, M., & Webb, F. H. (2003). Neutral atmospheric delay in interferometric synthetic aperture radar applications—statistical description and mitigation. Journal of Geophysical Research, 108, 2231. doi:10.1029/2002JB001781.

    Article  Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., & Hensley, S., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004. doi:10.1029/2005RG000183.

  • Ferretti, A., Prati, C., & Rocca, F. (1999). Multibaseline InSAR DEM reconstruction—the wavelet approach. IEEE Transactions on Geoscience and Remote Sensing, 37, 705–715.

    Article  Google Scholar 

  • Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., & Massonnet, D. (2007). InSAR principles: Guidelines for SAR interferometry processing and interpretation. Noordwijk: European Space Agency Publication, TM-19.

    Google Scholar 

  • Fialko, Y., Khazan, Y., & Simons, M. (2001). Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146, 181–190.

    Article  Google Scholar 

  • Fornaro, G., & Guarnieri, A. M. (2002). Minimum mean square error space-varying filtering of interferometric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 40, 11–21.

    Article  Google Scholar 

  • Foster, J., Brooks, B., Cherubini, T., Shacat, C., Businger, S., & Werner, C. L. (2006). Mitigating atmospheric noise for InSAR using a high resolution weather model. Geophysical Research Letters, 33, L16304. doi:10.1029/2006GL026781.

    Article  Google Scholar 

  • Fujiwara, S., Rosen, P. A., Tobita, M., & Murakami, M. (1998). Crustal deformation measurements using repeat-pass JERS-1 synthetic aperture radar interferometry near the Izu Peninsula, Japan. Journal of Geophysical Research, 103, 2411–2426.

    Article  Google Scholar 

  • Gabriel, A., & Goldstein, R. (1988). Crossed orbit interferometry—theory and experimental results from SIR-B. International Journal of Remote Sensing, 9, 857–872.

    Article  Google Scholar 

  • Gatelli, F., Monti Guarnieri, A., Parizzi, F., Pasquali, P., Prati, C., & Rocca, F. (1994). Use of the spectral shift in SAR interferometry—applications to ERS-1. IEEE Transactions on Geoscience and Remote Sensing, 32(4), 855–865.

    Article  Google Scholar 

  • Gray, A. L., Mattar, K. E., & Sofko, G. (2000). Influence of ionospheric electron density fluctuations on satellite radar interferometry. Geophysical Research Letters, 27, 1451–1454.

    Article  Google Scholar 

  • Gray, L., & Farris-Manning, P. J. (1993). Repeat-pass interferometry with airborne synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 31, 180–191.

    Article  Google Scholar 

  • Guarnieri, A. M., & Prati, C. (2000). ERS-ENVISAT combination for interferometry and super-resolution. Proceedings of ERS-Envisat Symposium 2000 (p. 7). European Space Agency SP-461.

    Google Scholar 

  • Hanssen, R. (2001). Radar interferometry—data interpretation and error analysis (p. 328). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Henderson, F., & Lewis, A. (Eds.). (1998). Principles and applications of imaging radar: Manual of Remote Sensing (Vol. 2, 3rd ed., p. 896) (R. A. Ryerson, editor-in-chief). New York: Wiley.

    Google Scholar 

  • Hensley, S., Munjy, R., & Rosen, P. (2001). Interferometric synthetic aperture radar (IFSAR). In D. F. Maune (Ed.), Digital elevation model technologies and applications—the DEM users manual (2nd ed.). Bethesda, MD: American Society for Photogrammetry and Remote Sensing.

    Google Scholar 

  • Jarlemark, P. O. J., & Elgered, G. (1998). Characterization of temporal variations in atmospheric water vapor. IEEE Transactions on Geoscience and Remote Sensing, 36, 319–321.

    Article  Google Scholar 

  • Johnson, D. J. (1987). Elastic and inelastic magma storage at Kīlauea volcano. In R. W. Decker, T. L. Wright, & P. H. Stauffer (Eds.), Volcanism in Hawaii (pp. 1297–1306). Washington, DC: U.S. Geological Survey Professional Paper 1350.

    Google Scholar 

  • Jung, H. S., Lee, D. T., Lu, Z., & Won, J. S. (2013). Ionospheric correction of SAR interferograms by multiple-aperture interferometry. IEEE Transactions on Geoscience and Remote Sensing, 51, 3191–3199.

    Article  Google Scholar 

  • Lee, W. J., Jung, H.-S., & Lu, Z. (2010). A study of high-precision DEM generation using ERS-Envisat SAR cross-interfeometry. Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 28(4), 431–439.

    Google Scholar 

  • Levanon, N. (1988). Radar principles (p. 320). New York: Wiley.

    Google Scholar 

  • Li, F. K., & Goldstein, R. M. (1990). Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Transactions on Geoscience and Remote Sensing, 28, 88–96.

    Article  Google Scholar 

  • Li, Z., Muller, J.-P., & Cross, P. (2003). Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements. Journal of Geophysical Research, 108, 4651. doi:10.1029/2003JD003372.

    Article  Google Scholar 

  • Li, Z., Fielding, E., Cross, P., & Muller, J.-P. (2005). InSAR atmospheric correction—GPS topography-dependent turbulence model (GTTM). Journal of Geophysical Research, 110, B02404. doi:10.1029/2005JB003711.

    Article  Google Scholar 

  • Lu, Z. (2007). ALOS PALSAR InSAR (interferometric synthetic aperture radar). NASA Alaska Satellite Facility News and Notes, 4(4), 1–2.

    Google Scholar 

  • Lu, Z., & Dzurisin, D. (2010). Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, inferred from InSAR analysis—II. Co-eruptive deflation, July–August 2008. Journal of Geophysical Research, 115. doi:10.1029/2009JB006970.

  • Lu, Z., & Freymueller, J. (1998). Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska. Journal of Geophysical Research, 103, 29887–29894.

    Article  Google Scholar 

  • Lu, Z., & Kwoun, O. (2008). Radarsat-1 and ERS interferometric analysis over southeastern coastal Louisiana—implications for mapping water-level changes beneath swamp forests. IEEE Transactions on Geoscience and Remote Sensing, 46, 2167–2184.

    Article  Google Scholar 

  • Lu, Z., Wicks, C., Power, J., & Dzurisin, D. (2000). Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 105, 21,483–21,496.

    Google Scholar 

  • Lu, Z., Wicks, C., Dzurisin, D., Power, J., Moran, S., & Thatcher, W. (2002). Magmatic inflation at a dormant stratovolcano—1996–98 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 107, 2134, 13 p. doi:10.1029/2001JB000471.

    Google Scholar 

  • Lu, Z., Fielding, E., Patrick, M., & Trautwein, C. (2003). Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: the 1997 eruption of Okmok volcano, Alaska. IEEE Transactions on Geoscience and Remote Sensing, 41, 1428–1436.

    Article  Google Scholar 

  • Lu, Z., Masterlark, T., & Dzurisin, D. (2005a). Interferometric synthetic aperture radar (InSAR) study of Okmok volcano, Alaska, 1992–2003—magma supply dynamics and post-emplacement lava flow deformation. Journal of Geophysical Research, 110(B2), B02403. doi:10.1029/2004JB003148.

  • Lu, Z., Wicks, C., Kwoun, O., Power, J., & Dzurisin, D. (2005b). Surface deformation associated with the March 1996 earthquake swarm at Akutan Island, Alaska, revealed by C-band ERS and L-band JERS radar interferometry. Canadian Journal of Remote Sensing, 31(1), 7–20.

    Article  Google Scholar 

  • Massonnet, D., & Feigl, K. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36, 441–500.

    Article  Google Scholar 

  • Massonnet, D., & Souyris, J. S. (2008). Imaging with synthetic aperture radar (p. 296). Boca Raton: EPFL Press, distributed by CRC Press.

    Google Scholar 

  • Mattar, K. E., & Gray, A. L. (2002). Reducing ionospheric electron density errors in satellite radar interferometry applications. Canadian Journal of Remote Sensing, 28(4), 593–600.

    Article  Google Scholar 

  • Meyer, F. (2011). Performance Requirements for Ionospheric Correction of Low-Frequency SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 49, 3694–3702.

    Article  Google Scholar 

  • Meyer, F., Bamler, R., Jakowski, N., & Fritz, T. (2006). The potential of low-frequency SAR systems for mapping ionospheric TEC distributions. IEEE Geoscience and Remote Sensing Letters, 3, 560–564.

    Article  Google Scholar 

  • Mogi, K. (1958). Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bulletin of the Earthquake Research Institute, University of Tokyo, 36, 99–134.

    Google Scholar 

  • Niell, A. E., Coster, A. J., Solheim, F. S., Mendes, V. B., Toor, P. C., Langley, R. B., et al. (2001). Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. Journal of Atmospheric and Oceanic Technology, 18, 830–850.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Parkinson, B., Spilker, J., Jr., Axelrad, P., & Enge, P. (1996). Global positioning system: Theory and applications (Vol. II). Washington, DC: AIAA.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T, & Flannery, B. P. (2007). Numerical recipes in C—the art of scientific computing (3rd ed., p. 994). Cambridge University Press, Cambridge.

    Google Scholar 

  • Prati, C., & Rocca, F. (1990). Limits to the resolution of elevation maps from stereo SAR images. International Journal of Remote Sensing, 11, 2215–2235.

    Article  Google Scholar 

  • Raucoules, R., & de Michele, M. (2010). Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake. IEEE Geoscience Remote Sensor Letter, 7, 286–290.

    Article  Google Scholar 

  • Rosen, P., Hensley, S., Zebker, H., Webb, F. H., & Fielding, E. J. (1996). Surface deformation and coherence measurements of Kīlauea volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101, 23109–23125.

    Article  Google Scholar 

  • Rosen, P. A., Hensley, S., Li, F., Joughin, I., Madsen, S., & Goldstein, D. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.

    Article  Google Scholar 

  • Rosen, P. A., Lavalle, M., Pi, X., Buckley, S., Szeliga, W., Zebker, H., & Gurrola, E. (2011). Techniques and tools for estimating ionospheric effects in interferometric and polarimetric SAR data. Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1501–1504). doi: 10.1109/IGARSS.2011.6049352.

  • Vachon, P. W., Geudtner, D., Gray, A. L., & Touzi, R. (1995). ERS-1 synthetic aperture radar repeat-pass interferometry studies—implications for Radarsat. Canadian Journal of Remote Sensing, 21, 441–454.

    Article  Google Scholar 

  • Wegmuller, U., Werner, C., Strozzi, T., & Wiesmann, A. (2006). Ionospheric electron concentration effects on SAR and INSAR (INTERFEROMETRIC SYNTHETIC APERTURE RADAR). 2006 International Geoscience and Remote Sensing Symposium, Denver, Colorado, USA.

    Google Scholar 

  • Yang, X. -M., Davis, P. M., & Dieterich, J. H. (1988). Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. Journal of Geophysical Research, 93(B5), 4249–4257.

    Google Scholar 

  • Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30, 950–959.

    Article  Google Scholar 

  • Zebker, H. A., Madsen, S. N., Martin, J., Wheeler, K. B., Miller, T., Lou, Y., et al. (1992). The TOPSAR interferometric radar topographic mapping instrument. IEEE Transactions on Geoscience and Remote Sensing, 30, 933–940.

    Article  Google Scholar 

  • Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., & Werner, C. L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry—the Landers earthquake. Journal of Geophysical Research, 99, 19617–19634.

    Article  Google Scholar 

  • Zebker, H., Rosen, P., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research, 102, 7547–7563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, Z., Dzurisin, D. (2014). Introduction to Interferometric Synthetic Aperture Radar. In: InSAR Imaging of Aleutian Volcanoes. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00348-6_1

Download citation

Publish with us

Policies and ethics