Skip to main content

Minimum Resource Characterization of Biochemical Analyses for Digital Microfluidic Biochip Design

  • Chapter
  • 2075 Accesses

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

Digital microfluidic systems (DMFS) are a class of lab-on-a-chip systems that manipulate individual droplets of chemicals on an array of electrodes. The biochemical analyses are performed by repeatedly moving, mixing, and splitting droplets on the electrodes. In this paper, we characterize the tree structure of biochemical analyses and identify their minimum resource requirements, towards the design of cost and space-efficient biochips. Mixers and storage units are two primary functional resources on a DMFS biochip; mixers mix and split droplets while storage units store droplets on the chip for subsequent processing. Additional DMFS resources include input and output units and transportation paths. We present an algorithm to compute, for a given number of mixers M, the minimum number of storage units f(M) for an input analysis using its tree structure, and design a corresponding scheduling algorithm to perform the analysis. We characterize the variation of the M-depth of a tree (i.e., its minimum number of storage units f(M)) with M, and use it to calculate the minimum total size (the number of electrodes) of mixers and storage units. We prove that the smallest chip for an arbitrary analysis uses one mixer and f(1) storage units. Finally, we demonstrate our results on two example biochemical analyses and design the smallest chip for a biochemical analysis with a complete tree structure of depth 4. These are the first results on the least resource requirements of DMFS for biochemical analyses, and can be used for the design and selection of chips for arbitrary biochemical analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhringer, K.-F.: Modeling and controlling parallel tasks in droplet-based microfluidic systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20(12), 1463–1468 (2001)

    Article  Google Scholar 

  2. Chen, X.X., Wu, H.K., Mao, C.D., Whitesides, G.M.: A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimenthylsiloxane). Anal. Chem. 74, 1772–1778 (2002)

    Article  Google Scholar 

  3. Cho, S.K., Moon, H., Kim, C.: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12(1), 70–80 (2003)

    Article  Google Scholar 

  4. Ding, J., Chakrabarty, K., Fair, R.B.: Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(2), 329–339 (2006)

    Google Scholar 

  5. Dittrich, P., Manz, A.: Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery 5(3), 210–218 (2006)

    Article  Google Scholar 

  6. Fair, R.B., Srinivasan, V., Ren, H., Paik, P., Pamula, V., Pollack, M.G.: Electrowettingbased on-chip sample processing for integrated microfluidics. In: IEEE International Electron Devices Meeting (IEDM), pp. 779–782 (2003)

    Google Scholar 

  7. Griffith, E.J., Akella, S.: Coordinating multiple droplets in planar array digital microfluidic systems. International Journal of Robotics Research 24(11), 933–949 (2005)

    Article  Google Scholar 

  8. Griffith, E.J., Akella, S., Goldberg, M.K.: Performance characterization of a reconfigurable planar array digital microfluidic system. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(2), 340–352 (2006)

    Article  Google Scholar 

  9. Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys, 406–471 (1999)

    Google Scholar 

  10. Luo, L., Akella, S.: Optimal scheduling for biochemical analyses on digital microfluidic systems. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2007, pp. 3151–3157 (2007)

    Google Scholar 

  11. Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab on a chip 3, 253–259 (2003)

    Article  Google Scholar 

  12. Pollack, M.G., Fair, R.B., Shenderov, A.D.: Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)

    Article  Google Scholar 

  13. Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip 5(3), 310–315 (2004)

    Article  Google Scholar 

  14. Su, F., Chakrabarty, K.: Architectural-level synthesis of digital microfluidics-based biochips. In: Proc. IEEE International Conference on CAD, pp. 223–228 (2004)

    Google Scholar 

  15. Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for defecttolerant microfluidic biochips. In: Proc. IEEE/ACM Design Automation Conference, pp. 825–830 (2005)

    Google Scholar 

  16. Su, F., Chakrabarty, K.: Module placement for fault-tolerant microfluidics-based biochips. ACM Transactions on Design Automation of Electronic Systems, 682–710 (2006)

    Google Scholar 

  17. Su, F., Hwang, W., Chakrabarty, K.: Droplet routing in the synthesis of digital microfluidic biochips. In: Design, Automation and Test in Europe (DATE) Conference, Munich, Germany, March 2006, pp. 323–328 (2006)

    Google Scholar 

  18. Zheng, B., Gerdts, C., Ismagilov, R.F.: Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Current Opinion in Structural Biology 15, 548–555 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, L., Akella, S. (2009). Minimum Resource Characterization of Biochemical Analyses for Digital Microfluidic Biochip Design. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics