Skip to main content

On Probabilistic Search Decisions under Searcher Motion Constraints

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

This article presents a sequential decision-theoretic formulation for conducting probabilistic search for a stationary target in a search region. A general recursion expression describing the evolution of the search decision (i.e., presence or absence of the target) is derived, which relates the temporal sequence of imperfect detections, both false positives and false negatives, to the spatial search conducted by a search agent. This relationship enables quantification of the decision performance – time till decision – for a given search strategy. Also, the role of searcher motion constraints, represented by a search graph, on the time till decision is characterized by the second smallest eigenvalue of the Laplacian of this graph. Numerical studies demonstrate this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alterovitz, R., Simeon, T., Goldberg, K.: The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty. In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA (June 2007)

    Google Scholar 

  2. Benkoski, S.J., Monticino, M.G., Weisinger, J.R.: A Survey of the Search Theory Literature. Naval Research Logistics 38, 469–494 (1991)

    Article  MATH  Google Scholar 

  3. Bourgault, F., Furukawa, T., Durrant-Whyte, H.: Optimal Search for a Lost Target in a Bayesian World. Field and Service Robotics (STAR Springer Tracts in Advanced Robotics) 24, 209–222 (2006)

    Article  Google Scholar 

  4. Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., Durrant-Whyte, H.: Information Based Adaptive Robotic Exploration. In: Proc. of 2002 IEEE Int’l. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September-5 October, vol. 1, pp. 540–545 (2002)

    Google Scholar 

  5. Brown, S.S.: Optimal Search for a Moving Target in Discrete Time and Space. Operations Research 28(6), 1275–1289 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Choset, H.: Coverage for Robotics - A Survey of Recent Results. Annals of Mathematics and Artificial Intelligence 31, 113–126 (2001)

    Article  Google Scholar 

  7. Chung, T.H., Burdick, J.W.: A Decision-Making Framework for Control Strategies in Probabilistic Search. In: Proc. 2007 IEEE Int’l. Conf. on Robotics and Automation (2007)

    Google Scholar 

  8. Chung, T.H., Burdick, J.W.: Multi-agent Probabilistic Search in a Sequential Decision-theoretic Framework. In: Proc. 2008 IEEE Int’l. Conf. on Robotics and Automation (2008)

    Google Scholar 

  9. DasGupta, B., Hespanha, J.P., Riehlb, J., Sontag, E.: Honey-pot Constrained Searching with Local Sensory Information. Nonlinear Analysis 65(9), 1773–1793 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dell, R.F., Eagle, J.N., Martins, G.H.A., Santos, A.G.: Using Multiple Searchers in Constrained-Path, Moving-Target Search Problems. Naval Research Logistics 43(4), 463–480 (1996)

    Article  MATH  Google Scholar 

  11. Eagle, J.N., Yee, J.R.: An Optimal Branch-and-Bound Procedure for the Constrained Path, Moving Target Search Problem. Operations Research 38(1), 110–114 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fiedler, M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23(98), 298–305 (1973)

    MathSciNet  Google Scholar 

  13. Gal, S.: Search Games. Academic Press, New York (1980)

    MATH  Google Scholar 

  14. Hamburger, P., Vandell, R., Walsh, M.: Routing Sets in the Integer Lattice. Discrete Applied Mathematics 155(11), 1384–1394 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kalbaugh, D.V.: Optimal Search Among False Contacts. SIAM Journal on Applied Mathematics 52(6), 1722–1750 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Koopman, B.O.: Search and Its Optimization. The American Mathematical Monthly 86(7), 527–540 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kress, M., Szechtman, R., Jones, J.S.: Efficient Employment of Non-Reactive Sensors. Military Operations Research (2008) (to appear)

    Google Scholar 

  18. Lau, H.: Optimal Search in Structured Environments. PhD thesis, University of Technology, Sydney, Australia (2007)

    Google Scholar 

  19. LaValle, S.M., Hinrichsen, J.: Visibility-Based Pursuit-Evasion: The Case of Curved Environments. IEEE Transactions on Robotics and Automation 17(2), 196–201 (2001)

    Article  Google Scholar 

  20. Merris, R.: Laplacian Matrices of Graphs: A Survey. Linear Algebra and its Applications 197/198, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  21. Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., Hutchinson, S.: Surveillance Strategies for a Pursuer with Finite Sensor Range. Int’l Journal of Robotics Research 26(3), 233 (2007)

    Article  Google Scholar 

  22. Song, N.-O., Teneketzis, D.: Discrete Search with Multiple Sensors. Mathematical Methods of Operations Research 60(1), 1–13 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Stone, L.D.: Theory of Optimal Search, 2nd edn. Academic Press, London (1989)

    Google Scholar 

  24. Trummel, K.E., Weisinger, J.R.: The Complexity of the Optimal Searcher Path Problem. Operations Research 34(2), 324–327 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vidal, R., Shakernia, O., Kim, H., Shim, D., Sastry, S.: Probabilistic Pursuit-Evasion Games: Theory, Implementation and Experimental Evaluation. IEEE Trans. on Robotics and Automation 18(5), 662–669 (2002)

    Article  Google Scholar 

  26. Washburn, A.R.: Search for a Moving Target: The FAB Algorithm. Operations Research 31(4), 739–751 (1983)

    Article  MATH  Google Scholar 

  27. Washburn, A.R.: Search and Detection, 4th edn. Topics in Operations Research Series. INFORMS (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chung, T.H. (2009). On Probabilistic Search Decisions under Searcher Motion Constraints. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics