Skip to main content

Mirror-Based Extrinsic Camera Calibration

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

This paper presents a method for determining the six degree-of-freedom transformation between a camera and a base frame of interest. A planar mirror is maneuvered so as to allow the camera to observe the environment from several viewing angles. Points, whose coordinates in the base frame are known, are observed by the camera via their reflections in the mirror. Exploiting these measurements, we determine the camera-to-base transformation analytically, without assuming prior knowledge of the mirror motion or placement with respect to the camera. The computed solution is refined using a maximum-likelihood estimator, to obtain high-accuracy estimates of the camera-to-base transformation and the mirror configuration for each image.We validate the accuracy and correctness of our method with simulations and real-world experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brun, X., Goulette, F.: Modeling and calibration of coupled fish-eye CCD camera and laser range scanner for outdoor environment reconstruction. In: Proc. of the Int. Conf. on 3D Digital Imaging and Modeling, Montréal, Canada, August 21-23, pp. 320–327 (2007)

    Google Scholar 

  2. Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. Journal of Robotics Research 18(3), 286–298 (1999)

    Article  MathSciNet  Google Scholar 

  3. Gluckman, J., Nayar, S.K.: Planar catadioptric stereo: Geometry and calibration. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Ft. Collins, CO, June 23-25, pp. 22–28 (1999)

    Google Scholar 

  4. Haralick, R.M., Lee, C.-N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. Int. Journal of Computer Vision 13(3), 331–356 (1994)

    Article  Google Scholar 

  5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Hesch, J.A., Mourikis, A.I., Roumeliotis, S.I.: Camera to robot-body calibration using planar mirror reflections. Technical Report 2008-001, University of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab (July 2008)

    Google Scholar 

  7. Hesch, J.A., Mourikis, A.I., Roumeliotis, S.I.: Determining the camera to robot-body transformation from planar mirror reflections. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France, September 22-26, pp. 3865–3871 (2008)

    Google Scholar 

  8. Inaba, M., Hara, T., Inoue, H.: A stereo viewer based on a single camera with view-control mechanisms. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Yokohama, Japan, July 26-30, pp. 1857–1865 (1993)

    Google Scholar 

  9. Jang, G., Kim, S., Kweon, I.: Single camera catadioptic stereo system. In: Proc. of the Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras, Beijing, China, October 21 (2005)

    Google Scholar 

  10. Jang, K.H., Lee, D.H., Jung, S.K.: A moving planar mirror based approach for cultural reconstruction. Computer Animation and Virtual Worlds 15(3-4), 415–423 (2004)

    Article  Google Scholar 

  11. Kanbara, M., Ukita, N., Kidode, M., Yokoya, N.: 3D scene reconstruction from reflection images in a spherical mirror. In: Proc. of the Int. Conf. on Pattern Recognition, Hong Kong, China, August 20-24, pp. 874–897 (2006)

    Google Scholar 

  12. Kumar, R.K., Ilie, A., Frahm, J.-M., Pollefeys, M.: Simple calibration of non-overlapping cameras with a mirror. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, AK, June 24-26 (2008)

    Google Scholar 

  13. Martinelli, A., Siegwart, R.: Observability properties and optimal trajectories for on-line odometry self-calibration. In: Proc. of the IEEE Conf. on Decision and Control, San Diego, CA, December 13-15, pp. 3065–3070 (2006)

    Google Scholar 

  14. Mirzaei, F.M., Roumeliotis, S.I.: A Kalman filter-based algorithm for IMU-camera calibration: Observability analysis and performance evaluation. IEEE Trans. on Robotics 24(5), 1143–1156 (2008)

    Article  Google Scholar 

  15. Nayar, S.K.: Sphereo: Determining depth using two specular spheres and a single camera. In: Proc. of the SPIE Conf. on Optics, Illumination, and Image Sensing for Machine Vision, November 1988, vol. 1005, pp. 245–254 (1988)

    Google Scholar 

  16. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, British Columbia, Canada, December 3-8, vol. 2, pp. 849–856 (2002)

    Google Scholar 

  17. Ramsgaard, B.K., Balslev, I., Arnspang, J.: Mirror-based trinocular systems in robot-vision. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Barcelona, Spain, September 3-7, pp. 499–502 (2000)

    Google Scholar 

  18. Shi, J., Tomasi, C.: Good features to track. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC, June 27-July 2, pp. 593–600 (1994)

    Google Scholar 

  19. Trawny, N., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation. Technical Report 2005-002, University of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab (March 2005)

    Google Scholar 

  20. Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. on Robotics and Automation 5(3), 345–358 (1989)

    Article  Google Scholar 

  21. Wasielewski, S., Strauss, O.: Calibration of a multi-sensor system laser rangefinder/camera. In: Proc. of the Intelligent Vehicles Symposium, Detroit, MI, September 25-26, pp. 472–477 (1995)

    Google Scholar 

  22. Würz-Wessel, A., Stein, F.K.: Calibration of a free-form surface mirror in a stereo vision system. In: Proc. of the IEEE Intelligent Vehicle Symposium, Versailles, France, June 17-21, vol. 2, pp. 471–476 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hesch, J.A., Mourikis, A.I., Roumeliotis, S.I. (2009). Mirror-Based Extrinsic Camera Calibration. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics