Skip to main content

A Stopping Algorithm for Mechanical Systems

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

Analysis and control of underactuated mechanical systems in the nonzero velocity setting remains a challenging problem. In this paper, we demonstrate the utility of a recently developed alternative representation of the equations of motion for this large class of nonlinear control systems. The alternative representation gives rise to an intrinisic symmetric form. The generalized eigenvalues and eigenvectors associated with the symmetric form are used to determine control inputs that will drive a class of mechanical systems underactuated by one control to rest from an arbitrary initial configuration and velocity. Finally, we illustrate the stopping algorithm by presenting numerical simulation results for the planar rigid body, snakeboard and planar rollerblader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullo, F., Lewis, A.: Geometric Control of Mechanical Systems. Springer Science+Business Media, New York (2005)

    MATH  Google Scholar 

  2. Bullo, F., Lewis, A.: Low-order controllablility and kinematic reductions for affine connection control systems. SIAM Journal on Control and Optimization 44(3), 885–908 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bullo, F., Lewis, A.: Kinematic controllability and motion planning for the snakeboard. IEEE Transactions on Robotics and Automation 19(3), 494–498 (2003)

    Article  Google Scholar 

  4. Ostrowski, J.P., Desai, J.P., Kumar, V.: Optimal gait selection for nonholonomic locomotion systems. The International Journal of Robotics Research 19(5), 225–237 (2000)

    Article  Google Scholar 

  5. Bullo, F., Zefran, M.: On mechanical control systems with nonholonomic constraints and symmetries. Systems and Control Letters 45(2), 133–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hirschorn, R., Lewis, A.: Geometric local controllability: second-order conditions. In: Proceedings of the 41st IEEE CDC, vol. 1, December 2002, pp. 368–369 (2002)

    Google Scholar 

  7. Bullo, F., Cortes, J., Lewis, A., Martinez, S.: Vector-valued quadratic forms in control theory. In: Blondel, V., Megretski, A. (eds.) Sixty Open Problems in Mathematical Systems and Control Theory, pp. 315–320. Princeton University Press, Princeton (2004)

    Google Scholar 

  8. Chitta, S., Kumar, V.J.: Dynamics and generation of gaits for a planar rollerblader. In: Proceedings of the 2003 IEEE IROS, vol. 1, pp. 860–865 (2003)

    Google Scholar 

  9. Lewis, A., Ostrowski, J.P., Murray, R., Burdick, J.: Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings of the 1994 IEEE ICRA, pp. 2391–2400 (1994)

    Google Scholar 

  10. Bullo, F., Murray, R.: Tracking for fully actuated mechanical systems: A geometric framework. Automatica. The Journal of IFAC 35(1), 17–34 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lewis, A.: Simple mechanical control systems with constraints. IEEE Transactions on Automatic Control 45(8), 1420–1436 (2000)

    Article  MATH  Google Scholar 

  12. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992); English edn.

    MATH  Google Scholar 

  13. Nightingale, J., Hind, R., Goodwine, B.: Geometric analysis of a class of constrained mechanical control systems in the nonzero velocity setting. In: Proceedings of the 2008 IFAC (2008)

    Google Scholar 

  14. Nightingale, J., Hind, R., Goodwine, B.: Intrinsic Vector-Valued Symmetric Form for Simple Mechanical Control Systems in the nonzero velocity setting. In: Proceedings of the 2008 IEEE ICRA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nightingale, J., Hind, R., Goodwine, B. (2009). A Stopping Algorithm for Mechanical Systems. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics