Skip to main content

Autophagy in MHC Class II Presentation of Endogenous Antigens

  • Chapter
  • First Online:
Autophagy in Infection and Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 335))

Abstract

Macroautophagy is a catabolic process for the lysosomal turnover of cell organelles and protein aggregates. Lysosomal degradation products are displayed by major histocompatibility class II molecules to CD4+ T cells in the steady state for tolerance induction and during infections to mount adaptive immune responses. It has recently been shown that macroautophagy substrates can also give rise to MHC class II ligands. We review here the breadth of antigens that may utilize this pathway and the possible implications of this alternate route to MHC class II antigen presentation for immunity and tolerance. Based on this discussion, it is apparent that the regulation of macroautophagy may be beneficial in various disease settings in order to enhance adaptive immune responses or to reduce autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarraberes FA, Dice JF (2001) Protein translocation across membranes. Biochim Biophys Acta 1513:1–24

    Article  CAS  PubMed  Google Scholar 

  • Aichinger G, Karlsson L, Jackson MR, Vestberg M, Vaughan JH, Teyton L, Lechler RI, Peterson PA (1997) Major histocompatibility complex class II-dependent unfolding, transport, and degradation of endogenous proteins. J Biol Chem 272:29127–29136

    Article  CAS  PubMed  Google Scholar 

  • Aniento F, Roche E, Cuervo AM, Knecht E (1993) Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J Biol Chem 268:10463–10470

    CAS  PubMed  Google Scholar 

  • Barette C, Jariel-Encontre I, Piechaczyk M, Piette J (2001) Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene 20:551–562

    Article  CAS  PubMed  Google Scholar 

  • Bartido SM, Diment S, Reiss CS (1995) Processing of a viral glycoprotein in the endoplasmic reticulum for class II presentation. Eur J Immunol 25:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Bonifaz LC, Arzate S, Moreno J (1999) Endogenous and exogenous forms of the same antigen are processed from different pools to bind MHC class II molecules in endocytic compartments. Eur J Immunol 29:119–131

    Article  CAS  PubMed  Google Scholar 

  • Brazil MI, Weiss S, Stockinger B (1997) Excessive degradation of intracellular protein in macrophages prevents presentation in the context of major histocompatibility complex class II molecules. Eur J Immunol 27:1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Brooks A, Hartley S, Kjer-Nielsen L, Perera J, Goodnow CC, Basten A, McCluskey J (1991) Class II-restricted presentation of an endogenously derived immunodominant T-cell determinant of hen egg lysozyme. Proc Natl Acad Sci USA 88:3290–3294

    Article  CAS  PubMed  Google Scholar 

  • Brooks AG, McCluskey J (1993) Class II-restricted presentation of a hen egg lysozyme determinant derived from endogenous antigen sequestered in the cytoplasm or endoplasmic reticulum of the antigen presenting cells. J Immunol 150:3690–3697

    CAS  PubMed  Google Scholar 

  • Chen M, Shirai M, Liu Z, Arichi T, Takahashi H, Nishioka M (1998) Efficient class II major histocompatibility complex presentation of endogenously synthesized hepatitis C virus core protein by Epstein–Barr virus-transformed B-lymphoblastoid cell lines to CD4+ T cells. J Virol 72:8301–8308

    CAS  PubMed  Google Scholar 

  • Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263:6797–6805

    CAS  PubMed  Google Scholar 

  • Ciechanover A (2005) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ 12:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Dani A, Chaudhry A, Mukherjee P, Rajagopal D, Bhatia S, George A, Bal V, Rath S, Mayor S (2004) The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J Cell Sci 117:4219–4230

    Article  CAS  PubMed  Google Scholar 

  • Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927

    Article  CAS  PubMed  Google Scholar 

  • Dice JF, Goldberg AL (1975) A statistical analysis of the relationship between degradative rates and molecular weights of proteins. Arch Biochem Biophys 170:213–219

    Article  CAS  PubMed  Google Scholar 

  • Dissanayake SK, Tuera N, Ostrand-Rosenberg S (2005) Presentation of endogenously synthesized MHC class II-restricted epitopes by MHC class II cancer vaccines is independent of transporter associated with Ag processing and the proteasome. J Immunol 174:1811–1819

    CAS  PubMed  Google Scholar 

  • Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382

    Article  CAS  PubMed  Google Scholar 

  • Dorfel D, Appel S, Grunebach F, Weck MM, Muller MR, Heine A, Brossart P (2005) Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro transcribed MUC1 RNA. Blood 105:3199–3205

    Article  PubMed  Google Scholar 

  • Felix NJ, Allen PM (2007) Specificity of T-cell alloreactivity. Nat Rev Immunol 7:942–953

    Article  CAS  PubMed  Google Scholar 

  • Fengsrud M, Raiborg C, Berg TO, Stromhaug PE, Ueno T, Erichsen ES, Seglen PO (2000) Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem J 352:773–781

    Article  CAS  PubMed  Google Scholar 

  • Germain D, Russell A, Thompson A, Hendley J (2000) Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286. J Biol Chem 275:12074–12079

    Article  CAS  PubMed  Google Scholar 

  • Godefroy E, Scotto L, Souleimanian NE, Ritter G, Old LJ, Jotereau F, Valmori D, Ayyoub M (2006) Identification of two Melan-A CD4+ T cell epitopes presented by frequently expressed MHC class II alleles. Clin Immunol 121:54–62

    Article  CAS  PubMed  Google Scholar 

  • Groothuis TA, Neefjes J (2005) The many roads to cross-presentation. J Exp Med 202:1313–1318

    Article  CAS  PubMed  Google Scholar 

  • Gueguen M, Long EO (1996) Presentation of a cytosolic antigen by major histocompatibility complex class II molecules requires a long-lived form of the antigen. Proc Natl Acad Sci USA 93:14692–14697

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  CAS  PubMed  Google Scholar 

  • Hailman E, Allen PM (2004) Self help for T cells. Nat Immunol 5:780–781.

    Article  CAS  PubMed  Google Scholar 

  • Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in Atg16l1. Nat Genet 39:207–211

    Article  CAS  PubMed  Google Scholar 

  • Heessen S, Masucci MG, Dantuma NP (2005) The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell 18:225–235

    Article  CAS  PubMed  Google Scholar 

  • Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL (2003) A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 278:51841–51850

    Article  CAS  PubMed  Google Scholar 

  • Henell F, Berkenstam A, Ahlberg J, Glaumann H (1987) Degradation of short- and long-lived proteins in perfused liver and in isolated autophagic vacuoles-lysosomes. Exp Mol Pathol 46:1–14

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006) Glycine-alanine repeats impair proper substrate unfolding by the proteasome. Embo J 25:1720–1729

    Article  CAS  PubMed  Google Scholar 

  • Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156

    Article  PubMed  Google Scholar 

  • Jacobson S, Sekaly RP, Jacobson CL, McFarland HF, Long EO (1989) HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63:1756–1762

    CAS  PubMed  Google Scholar 

  • Jaraquemada D, Marti M, Long EO (1990) An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. J Exp Med 172:947–954

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944

    Article  CAS  PubMed  Google Scholar 

  • Kittlesen DJ, Brown LR, Braciale VL, Sambrook JP, Gething MJ, Braciale TJ (1993) Presentation of newly synthesized glycoproteins to CD4+ T lymphocytes. An analysis using influenza hemagglutinin transport mutants. J Exp Med 177:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Klein L, Kyewski B (2000) Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 12:179–186

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard M, Davis MM (2005) How T cells “see” antigen. Nat Immunol 6:239–245

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM (2005) Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434:238–243

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Chretien P, Laszlo A, Lambert H (1991) Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 147:93–101

    Article  CAS  PubMed  Google Scholar 

  • Le Roy E, Baron M, Faigle W, Clement D, Lewinsohn DM, Streblow DN, Nelson JA, Amigorena S, Davignon JL (2002) Infection of APC by human cytomegalovirus controlled through recognition of endogenous nuclear immediate early protein 1 by specific CD4+ T lymphocytes. J Immunol 169:1293–1301

    CAS  PubMed  Google Scholar 

  • Lee DY, Sugden B (2008) The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27:2833–2842

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC, Yonekura AR, Heath JK, Turley SJ (2007) Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8:181–190

    Article  CAS  PubMed  Google Scholar 

  • Lee SP, Brooks JM, Al-Jarrah H, Thomas WA, Haigh TA, Taylor GS, Humme S, Schepers A, Hammerschmidt W, Yates JL Rickinson AB, Blake NW (2004) CD8 T cell recognition of endogenously expressed Epstein-Barr virus nuclear antigen 1. J Exp Med 199:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    Article  CAS  PubMed  Google Scholar 

  • Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621

    Article  CAS  PubMed  Google Scholar 

  • Li D, Duncan RF (1995) Transient acquired thermotolerance in Drosophila, correlated with rapid degradation of Hsp70 during recovery. Eur J Biochem 231:454–465

    Article  CAS  PubMed  Google Scholar 

  • Lich JD, Elliott JF, Blum JS (2000) Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med 191:1513–1524

    Article  CAS  PubMed  Google Scholar 

  • Malnati MS, Marti M, LaVaute T, Jaraquemada D, Biddison W, DeMars R, Long EO (1992) Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature 357:702–704

    Article  CAS  PubMed  Google Scholar 

  • Marshall NA, Vickers MA, Barker RN (2003) Regulatory T cells secreting IL-10 dominate the immune response to EBV latent membrane protein 1. J Immunol 170:6183–6189

    CAS  PubMed  Google Scholar 

  • Mathis D, Benoist C (2007) A decade of AIRE. Nat Rev Immunol 7:645–650

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Dani A, Bhatia S, Singh N, Rudensky AY, George A, Bal V, Mayor S, Rath S (2001) Efficient presentation of both cytosolic and endogenous transmembrane protein antigens on MHC class II is dependent on cytoplasmic proteolysis. J Immunol 167:2632–2641

    CAS  PubMed  Google Scholar 

  • Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM (2000) Human CD4+ T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J Exp Med 191:1649–1660

    Article  PubMed  Google Scholar 

  • Nedjic J, Alchinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, Mautner J (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    Article  CAS  PubMed  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596

    Article  CAS  PubMed  Google Scholar 

  • Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6:280–286

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Rojas JM, Ostrand-Rosenberg S (2000) Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J Immunol 165:5451–5461

    CAS  PubMed  Google Scholar 

  • Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  CAS  PubMed  Google Scholar 

  • Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    Article  CAS  PubMed  Google Scholar 

  • Schmid D, Münz C (2007) Innate and adaptive immunity through autophagy. Immunity 26:11–21

    Article  Google Scholar 

  • Schmid D, Pypaert M, Münz C (2007) MHC class II antigen loading compartments continuously receive input from autophagosomes. Immunity 26:79–92

    Article  CAS  PubMed  Google Scholar 

  • Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13:2375–2387

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  CAS  PubMed  Google Scholar 

  • Suri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER (2008) First signature of islet β-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 180:3849–3856

    CAS  PubMed  Google Scholar 

  • Tellam J, Sherritt M, Thomson S, Tellam R, Moss DJ, Burrows SR, Wiertz E, Khanna R (2001) Targeting of EBNA1 for rapid intracellular degradation overrides the inhibitory effects of the Gly-Ala repeat domain and restores CD8+ T cell recognition. J Biol Chem 276:33353–33360

    Article  CAS  PubMed  Google Scholar 

  • Tewari MK, Sinnathamby G, Rajagopal D, Eisenlohr LC (2005) A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nat Immunol 6:287–294

    Article  CAS  PubMed  Google Scholar 

  • Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028

    Article  CAS  PubMed  Google Scholar 

  • Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178:7018–7031

    CAS  PubMed  Google Scholar 

  • Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM (1997) Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest 76:129–138

    CAS  PubMed  Google Scholar 

  • Weiss S, Bogen B (1989) B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc Natl Acad Sci USA 86:282–286

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, Bogen B (1991) MHC class II-restricted presentation of intracellular antigen. Cell 64:767–776

    Article  CAS  PubMed  Google Scholar 

  • Zarour HM, Kirkwood JM, Kierstead LS, Herr W, Brusic V, Slingluff CL Jr, Sidney J, Sette A, Storkus WJ (2000) Melan-A/MART-1(51-73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4+ T cells. Proc Natl Acad Sci USA 97:400–405

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Li P, Lott JM, Hislop A, Canaday DH, Brutkiewicz RR, Blum JS (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22:571–581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported by the Arnold and Mabel Beckman Foundation, the Alexandrine and Alexander Sinsheimer Foundation, the Burroughs Wellcome Fund, the Dana Foundation’s Neuroimmunology Program, the National Cancer Institute (R01CA108609 and R01CA101741), the National Institute of Allergy and Infectious Diseases (RFP-NIH-NIAID-DAIDS-BAA-06–19), the Foundation for the National Institutes of Health (Grand Challenges in Global Health), the Starr Foundation (to C.M.), and an Institutional Clinical and Translational Science Award (to the Rockefeller University Hospital).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Münz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gannagé, M., Münz, C. (2009). Autophagy in MHC Class II Presentation of Endogenous Antigens. In: Levine, B., Yoshimori, T., Deretic, V. (eds) Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, vol 335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00302-8_6

Download citation

Publish with us

Policies and ethics