Skip to main content

Something Old, Something New: Plant Innate Immunity and Autophagy

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 335))

Abstract

Autophagy performs a variety of established functions during plant growth and development. Recently, autophagy has been further implicated in the regulation of programmed cell death induced during the plant innate immune response. In this chapter we describe specific mechanisms through which autophagy may contribute to a successful defense against pathogen invasion. Accumulating evidence shows that the plant immune system utilizes the chloroplasts as primary sites for the regulation of cell death programs. Viruses also appear to utilize the chloroplast as a site of replication and accumulation, potentially inactivating chloroplast defense signaling in the process. Autophagy-like mechanisms have been observed to target the chloroplast, which we refer to as “chlorophagy,” potentially targeting invasive viruses for degradation or regulating chloroplast-based signaling during the immune response. We hypothesize that chlorophagy is significant for the execution of plant immune defenses, during both basal and effector-triggered immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlquist P (2006) Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 4:371–382

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC (2007) Plant autophagy—more than a starvation response. Curr Opin Plant Biol 10:587–593

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2:2–11

    CAS  PubMed  Google Scholar 

  • Beau I, Esclatine A, Codogno P (2008) Lost to translation: when autophagy targets mature ribosomes. Trends Cell Biol 18(7):311–314

    Article  CAS  PubMed  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  CAS  PubMed  Google Scholar 

  • Caplan J, Mamilapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008a) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    Article  CAS  PubMed  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008b) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  CAS  PubMed  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44:914–921

    Article  CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Culver JN (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40:287–308

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Deretic V (2005) Autophagy in innate and adaptive immunity. Trends Immunol 26:523–528

    Article  CAS  PubMed  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    Article  CAS  PubMed  Google Scholar 

  • Dunn WA, Jr, Cregg JM, Kiel JA, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1:75–83

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Hartley MR (1974) Nucleic acids of chloroplasts. In: Burton K (ed) Biochemistry of nucleic acids (MTP Int Rev Sci Ser Biochem, vol. 6). Medical and Technical Publishing Co. Ltd, Lancaster

    Google Scholar 

  • Esau K, Cronshaw J (1967) Relation of tobacco mosaic virus to the host cells. J Cell Biol 33:665–678

    Article  CAS  PubMed  Google Scholar 

  • Espinoza C, Medina C, Somerville S, Arce-Johnson P (2007) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58:3197–3212

    Article  CAS  PubMed  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Granett AL, Shalla TA (1970) Discrepancies in the intracellular behavior of three strains of tobacco mosaic virus, two of which are serologically indistinguishable. Phytopathology 60:419–425

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Hodgson RA, Beachy RN, Pakrasi HB (1989) Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett 245:267–270

    Article  CAS  PubMed  Google Scholar 

  • Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA (2006) Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19:350–358

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Ma D, Dong J, Li D, Deng C, Jin J, Wang T (2007) The HC-pro protein of potato virus Y interacts with NtMinD of tobacco. Mol Plant Microbe Interact 20:1505–1511

    Article  CAS  PubMed  Google Scholar 

  • Kiba A, Takata O, Ohnishi K, Hikichi Y (2006) Comparative analysis of induction pattern of programmed cell death and defense-related responses during hypersensitive cell death and development of bacterial necrotic leaf spots in eggplant. Planta 224:981–994

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Mizushima N, Lemasters J (2006) Selective removal of damaged mitochondria by autophagy (mitophagy). Hepatology 44(Suppl):188A–286A (241A abstract)

    Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  Google Scholar 

  • Kiraly L, Hafez YM, Fodor J, Kiraly Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  CAS  PubMed  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lehto K, Tikkanen M, Hiriart JB, Paakkarinen V, Aro EM (2003) Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Mol Plant Microbe Interact 16:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    Article  CAS  PubMed  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–1136

    Article  CAS  PubMed  Google Scholar 

  • Lin JW, Ding MP, Hsu YH, Tsai CH (2007) Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of bamboo mosaic virus. Nucleic Acids Res 35:424–432

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  CAS  PubMed  Google Scholar 

  • Mae T, Kai N, Makino A, Ohira K (1984) Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant Cell Physiol 25:333–336

    CAS  Google Scholar 

  • Mae T, Makino A, Ohira K (1983) Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol 24:1079–1086

    CAS  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Mae T, Ohira K (1983) Photosynthesis and ribulose 1,5-bisphosphate carboxylase in rice leaves: changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. Plant Physiol 73:1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Martelli GP, Russo M (1973) Electron microscopy of artichoke mottled crinkle virus in leaves of Chenopodium quinoa Willd. J Ultrastruct Res 42:93–107

    Article  CAS  PubMed  Google Scholar 

  • Martin MT, Cervera MT, Garcia JA, Bonay P (1995) Properties of the active plum pox potyvirus RNA polymerase complex in defined glycerol gradient fractions. Virus Res 37:127–137

    Article  CAS  PubMed  Google Scholar 

  • Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  CAS  PubMed  Google Scholar 

  • Mijaljica D, Prescott M, Devenish RJ (2007) Different fates of mitochondria: alternative ways for degradation? Autophagy 3:4–9

    CAS  PubMed  Google Scholar 

  • Miller BL, Huffaker RC (1981) Partial purification and characterization of endoproteinases from senescing barley leaves. Plant Physiol 68:930–936

    Article  CAS  PubMed  Google Scholar 

  • Minamikawa T, Toyooka K, Okamoto T, Hara-Nishimura I, Nishimura M (2001) Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing french bean leaves: immunocytochemical and ultrastructural observations. Protoplasma 218:144–153

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Kato T, Tabata S, Seki M, Kobayashi M, Shinozaki K, Moriyasu Y (2004) Disposal of chloroplasts with abnormal function into the vacuole in Arabidopsis thaliana cotyledon cells. Protoplasma 223:229–232

    Article  PubMed  Google Scholar 

  • Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hashimoto H, Katoh S (1995) Changes in the number and size of chloroplasts during senescence of primary leaves of wheat grown under different conditions. Plant Cell Physiol 36:9–17

    CAS  Google Scholar 

  • Patel S, Caplan J, Dinesh-Kumar SP (2006) Autophagy in the control of programmed cell death. Curr Opin Plant Biol 9:391–396

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20–27

    CAS  PubMed  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  • Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Prod’homme D, Jakubiec A, Tournier V, Drugeon G, Jupin I (2003) Targeting of the turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J Virol 77:9124–9135

    Article  PubMed  Google Scholar 

  • Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17:249–263

    CAS  PubMed  Google Scholar 

  • Radwan DE, Lu G, Fayez KA, Mahmoud SY (2008) Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. J Plant Physiol 165:845–857

    Article  CAS  PubMed  Google Scholar 

  • Reinero A, Beachy RA (1986) Association of TMV coat protein with chloroplast membranes in virus-infected leaves. Plant Mol Biol 6:291–301

    Article  CAS  Google Scholar 

  • Reinero A, Beachy RN (1989) Reduced photosystem II activity and accumulation of viral coat protein in chloroplasts of leaves infected with tobacco mosaic virus. Plant Physiol 89:111–116

    Article  CAS  PubMed  Google Scholar 

  • Roberts DA, Christie RG, Archer MC, Jr. (1970) Infection of apical initials in tobacco shoot meristems by tobacco ringspot virus. Virology 42:217–220

    Article  CAS  PubMed  Google Scholar 

  • Roberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M, Goldfarb DS (2003) Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 14:129–141

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C (1997) The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296–306

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141:625–636

    Article  CAS  PubMed  Google Scholar 

  • Salonen A, Ahola T, Kaariainen L (2005) Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285:139–173

    Article  CAS  PubMed  Google Scholar 

  • Saric A, Wrischer M (1975) Fine structure changes in different host plants induced by grapevine fanleaf virus. J. Phytopathol. 84:97–104

    Article  Google Scholar 

  • Seay M, Patel S, Dinesh-Kumar SP (2006) Autophagy and plant innate immunity. Cell Microbiol 8:899–906

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917–932

    Article  CAS  PubMed  Google Scholar 

  • Shalla TA, Petersen LJ, Giunchedi L (1975) Partial characterization of virus-like particles in chloroplasts of plants infected with the U5 strain of TMV. Virology 66:94–105

    Article  CAS  PubMed  Google Scholar 

  • Slavikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56:2839–2849

    Article  CAS  PubMed  Google Scholar 

  • Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    Article  CAS  PubMed  Google Scholar 

  • Thayer SS, Huffaker RC (1984) Vacuolar localization of endoproteinases EP(1) and EP(2) in barley mesophyll cells. Plant Physiol 75:70–73

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097–2110

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8:165–173

    Article  CAS  PubMed  Google Scholar 

  • Torrance L, Cowan GH, Gillespie T, Ziegler A, Lacomme C (2006) Barley stripe mosaic virus-encoded proteins triple-gene block 2 and gammab localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. J Gen Virol 87:2403–2411

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Tuttle DL, Dunn WA, Jr. (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108 (Pt 1):25–35

    CAS  PubMed  Google Scholar 

  • Wardley TM, Bhalla PL, Dalling MJ (1984) Changes in the number and composition of chloroplasts during senescence of mesophyll cells of attached and detached primary leaves of wheat (Triticum aestivum L.). Plant Physiol 75:421–424

    Article  CAS  PubMed  Google Scholar 

  • Weintraub M, Ragetli HW (1970) Identification of the constituents of southern bean mosaic virus in crystals of infected cells, and their distribution within the virion. Virology 41:729–739

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Wittenbach VA, Lin W, Hebert RR (1982) Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69:98–102

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Kakani K, Reade R, Hui E, Rochon D (2006) A 38-amino-acid sequence encompassing the arm domain of the cucumber necrosis virus coat protein functions as a chloroplast transit peptide in infected plants. J Virol 80:7952–7964

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2007a) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3:257–258

    CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007b) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Minamikawa T (1996) Successive amino-terminal proteolysis of the large subunit of ribulose 1,5-biphosphate carboxylase/oxygenase by vacuolar enzymes from French bean leaves. Eur J Biochem 238:317–324

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Muller M, Zellnig G (2003) Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Arch Virol 148:1119–1133

    Article  CAS  PubMed  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Qi H, Taylor R, Xu W, Liu LF, Jin S (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:337–346

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NIH and NSF grants support autophagy work in the Dinesh-Kumar lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Dinesh-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seay, M., Hayward, A.P., Tsao, J., Dinesh-Kumar, S.P. (2009). Something Old, Something New: Plant Innate Immunity and Autophagy. In: Levine, B., Yoshimori, T., Deretic, V. (eds) Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, vol 335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00302-8_14

Download citation

Publish with us

Policies and ethics