Advertisement

Large Eddy Simulations of Turbulent Combustion

  • Denis Veynante
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 105)

Abstract

In large eddy simulation (LES), the larger turbulent motions in a flow field are explicitly computed when only the effects of the small ones are modelled. This approach is very well adapted to turbulent reacting flows which are generally dominated by such structures, especially when combustion instabilities occur. The instantaneous location of cold and burnt gases are then identified at the resolved scale level. As they may have very different characteristics in terms of turbulence, pollutant emissions or radiative heat transfes, this identification is expected to allow a better description of the flame / turbulence interactions. Nevertheless, models are still required to describe small scale effects and this approach is computationally expensive. To compare numerical results with experimental data is also a challenge. Despite of these difficulties, very impressive results have already been achieved using LES in complex configurations.

Keywords

Large Eddy Simulation Heat Release Rate Radiative Heat Transfer Mixture Fraction Subgrid Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sagaut, P.: Large Eddy Simulation for incompressible flows. Scientific computation series. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  3. 3.
    Geurts, B.J. (ed.): Modern Simulations Strategies for Turbulent Flow. Edwards Inc., Philadelphia (2001)Google Scholar
  4. 4.
    Geurts, B.J.: Elements of Direct and Large-Eddy Simulation. Edwards Inc., Philadelphia (2004)Google Scholar
  5. 5.
    Janicka, J., Sadiki, A.: Large eddy simulation for turbulent combustion. In: Proc. of the Combustion Institute, vol. 30, pp. 537–547 (2004)Google Scholar
  6. 6.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards Inc., Philadelphia (2005)Google Scholar
  7. 7.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mach. 38, 453–482 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Coats, C.M.: Coherent structures in combustion. Progress in Energy and Combustion Science 22, 427–509 (1996)CrossRefGoogle Scholar
  9. 9.
    Candel, S.: Combustion instabilities coupled by pressure waves and their active control. In: 24th Symp. Int. on Combustion, pp. 1277–1296. The Combustion Institute, Pittsburgh (1992)Google Scholar
  10. 10.
    Veynante, D., Vervisch, L.: Turbulent combustion modeling. In: Proc. Energy and Comb. Science, vol. 28(3), pp. 193–301 (2002)Google Scholar
  11. 11.
    Ghosal, S., Moin, P.: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comp. Phys. 118, 24–37 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moureau, V., Vasilyev, O., Angelberger, C., Poinsot, T.: Commutation errors in large eddy simulations on moving grids. application to piston engine flows. In: Proceeding of the Summer program, pp. 157–168. Center for Turbulence Research, NASA AMES/Stanford University, USA (2004)Google Scholar
  13. 13.
    Lesieur, M., Métais, O.: New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28, 45–82 (1996)CrossRefGoogle Scholar
  14. 14.
    Piomelli, U., Chasnov, J.R.: Large eddy simulations: theory and applications. In: Hallbck, H., Henningson, D.S., Johansson, A.V., Alfredsson, P.H. (eds.) Turbulence and Transition Modelling, pp. 269–336. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  15. 15.
    Ferziger, J.: Large eddy simulation: an introduction and perspective. In: Métais, O., Ferziger, J. (eds.) New tools in turbulence modelling, pp. 29–47. Les Editions de Physique - Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Lesieur, M.: Recent approaches in large-eddy simulations of turbulence. In: Métais, O., Ferziger, J. (eds.) New tools in turbulence modelling, pp. 1–28. Les Editions de Physique - Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Piomelli, U.: Large-eddy simulation: achievements and challenges. Progress in Aerospace Science 35, 335–362 (1999)CrossRefGoogle Scholar
  18. 18.
    Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large eddy simulation. Ann. Rev. Fluid Mech. 32, 1–32 (2000)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Smagorinsky, J.: General circulation experiments with the primitive equations: 1. the basic experiment. Mon. Wea. Rev. 91, 99–164 (1963) (ref lolo)CrossRefGoogle Scholar
  20. 20.
    Bardina, J., Ferziger, J.H., Reynolds, W.C.: Impoved subgrid scales models for large eddy simulations. In: AIAA 13th Fluid & Plasma Dyn. Conf., Snowmass, Colorado (1980); AIAA Paper 80-1357Google Scholar
  21. 21.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)zbMATHCrossRefGoogle Scholar
  22. 22.
    Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 113, 2746–2757 (1991)Google Scholar
  23. 23.
    Pope, S.B.: Computations of turbulent combustion: progress and challenges. In: 23rd Symp. (Int.) on Combustion, pp. 591–612. The Combustion Institute, Pittsburgh (1990)Google Scholar
  24. 24.
    Kerstein, A.R., Ashurst, W., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Physical Review A 37(7), 2728–2731 (1988)CrossRefGoogle Scholar
  25. 25.
    Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  26. 26.
    Piana, J., Veynante, D., Candel, S., Poinsot, T.: Direct numerical simulation analysis of the g-equation in premixed combustion. In: Chollet, J.P., Voke, P.R., Kleiser, L. (eds.) Direct and Large Eddy Simulation II, pp. 321–330. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  27. 27.
    Menon, S., Jou, W.H.: Large eddy simulations of combustion instability in an axisymmetric ramjet combustor. Combustion, Science and Technology 75(1-3), 53–72 (1991)CrossRefGoogle Scholar
  28. 28.
    Pitsch, H., Duchamp de la Geneste, L.: Large eddy simulation of premixed turbulent combustion using a level-set approach. In: Proc. of the Comb. Institute, vol. 29, pp. 2001–2008 (2002)Google Scholar
  29. 29.
    Wang, P., Bai, X.S.: Large eddy simulation of turbulent premixed flames using level-set g-equation. In: Proc. of the Combustion Institute, vol. 30, pp. 583–591 (2005)Google Scholar
  30. 30.
    Tan, Z., Reitz, R.D.: An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling. Combust. Flame 145, 1–15 (2006)Google Scholar
  31. 31.
    Herrmann, M.: Numerical simulation of turbulent bunsen flames with a level set flamelet model. Combust. Flame 145, 357–375 (2006)CrossRefGoogle Scholar
  32. 32.
    Smiljanovski, V., Moser, V., Klein, R.: A capturing-tracking hybrid scheme for deflagration discontinuities. Combustion Theory and Modelling 1(2), 183–215 (1997)zbMATHCrossRefGoogle Scholar
  33. 33.
    Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: Twenty-seventh Symposium International on Combustion, pp. 917–925. The Combustion Institute (1998)Google Scholar
  34. 34.
    Boger, M.: Modélisation de sous-maille pour la simulation aux grandes échelles de la combustion turbulente prémélangée. Ph.D thesis, Ecole Centrale Paris, France (2000)Google Scholar
  35. 35.
    Knikker, R., Veynante, D., Meneveau, C.: A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. In: Proc. Combust. Inst., vol. 29, pp. 2105–2111 (2002)Google Scholar
  36. 36.
    Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16(11), L91 – L94 (2004)CrossRefGoogle Scholar
  37. 37.
    Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling les combustion model to a a turbulent mixing layer. In: Twenty-seventh Symposium (International) on Combustion, pp. 899–907. The Combustion Institute (1998)Google Scholar
  38. 38.
    Hawkes, E.R., Cant, S.R.: A flame surface density approach to large eddy simulation of premixed turbulent combustion. In: Proc. Combust. Inst., vol. 28 (2000)Google Scholar
  39. 39.
    Richard, S., Colin, O., Vermorel, O., Benkenida, A., Veynante, D.: Development of les models based on the flame surface density approach for ignition and combustion in si engines. In: ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Protugal (2005)Google Scholar
  40. 40.
    Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. In: Proc. of the Combustion Institute (published) (2006)Google Scholar
  41. 41.
    Butler, T.D., O’Rourke, P.J.: A numerical method for two-dimensional unsteady reacting flows. In: Sixteenth Symposium (International) on Combustion, pp. 1503–1515. The Combustion Institute (1977)Google Scholar
  42. 42.
    Angelberger, C., Veynante, D., Egolfopoulos, F., Poinsot, T.: Large eddy simulation of combustion instabilities in turbulent premixed flames. In: Proceedings of the Summer Program, pp. 61–82. Center for Turbulence Research (1998)Google Scholar
  43. 43.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids A 12(7), 1843–1863 (2000)CrossRefGoogle Scholar
  44. 44.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: Non-dynamic formulation and initial tests. Combust. Flame 131(1/2), 159–180 (2002)CrossRefGoogle Scholar
  45. 45.
    Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combustion and Flame 137, 489–505 (2004)CrossRefGoogle Scholar
  46. 46.
    Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141(1-2), 40–54 (2005)CrossRefGoogle Scholar
  47. 47.
    Légier, J.P., Varoquié, B., Lacas, F., Poinsot, T., Veynante, D.: Large eddy simulation of a non-premixed turbulent burner using a dynamically thickened flame model. In: Pollard, A., Candel, S. (eds.) IUTAM Symposium on Turbulent Mixing and Combustion, pp. 315–326. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  48. 48.
    Mizobuchi, Y., Tachibana, S., Shinjo, J., Ogawa, S., Takeno, T.: A numerical analysis of the structure of a turbulent hydrogen jet-lifted flame. In: Proc. Combust. Inst., vol. 29, pp. 2009–2015 (2002)Google Scholar
  49. 49.
    Mizobuchi, Y., Shinjo, J., Ogawa, S., Takeno, T.: A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet-lifted flame. In: Proc. of the Combustion Institute, vol. 30, pp. 611–619 (2005)Google Scholar
  50. 50.
    Kerstein, A.R.: A linear eddy model of turbulent scalar transport and mixing. Combust. Sci. Tech. 60, 391 (1988)CrossRefGoogle Scholar
  51. 51.
    Kerstein, A.R.: Linear-Eddy modeling of turbulent transport: Part II. Application to shear layer mixing. Combust. Flame 75(3 - 4), 397–413 (1989)CrossRefGoogle Scholar
  52. 52.
    McMurthy, P.A., Gansauge, T.C., Kerstein, A.R., Krueger, S.K.: Linear eddy simulations of mixing in a homogeneous turbulent flow. Phys. Fluids A 5(4), 1023–1034 (1993)CrossRefGoogle Scholar
  53. 53.
    McMurthy, P.A., Menon, S., Kerstein, A.R.: A linear eddy subgrid model for turbulent reacting flows: application to hydrogen-air combustion. In: 24th Symposium (International) on Combustion, pp. 271–278. The Combustion Institute, Pittsburg (1992)Google Scholar
  54. 54.
    Menon, S., McMurthy, P.A., Kerstein, A.R., Chen, J.Y.: Prediction of NOx production in a turbulent hydrogen-air jet flame. J. Prop. Power 10, 161–168 (1994)CrossRefGoogle Scholar
  55. 55.
    Calhoon, W.H., Menon, S.: Subgrid modeling for large eddy simulations. In: AIAA 34th Aerospace Science Meeting, Reno, Nevada, pp. 96–516 (1996); AIAA Paper 96-0516Google Scholar
  56. 56.
    Mathey, F., Chollet, J.P.: Subgrid-scale model of scalar mixing for large eddy simulation of turbulent flows. In: Chollet, J.P., Voke, P.R., Kleiser, L. (eds.) Direct and Large Eddy Simulation II, pp. 103–114. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  57. 57.
    Menon, S., Kerstein, A.R.: Stochastic simulation of the structure and propagation rate of turbulent premixed flames. In: 24th Symposium (International) on Combustion, pp. 443–450. The Combustion Institute, Pittsburg (1992)Google Scholar
  58. 58.
    Menon, S., McMurthy, P.A., Kerstein, A.R.: A linear eddy mixing model for large eddy simulation of turbulent combustion. In: Galperin, B., Orzag, S.A. (eds.) Large eddy simulation of complex engineering and geophysical flows, pp. 87–314. Cambridge University Press, Cambridge (1993)Google Scholar
  59. 59.
    Smith, T., Menon, S.: Model simulations of freely propagating turbulent premixed flames. In: Twenty-sixth Symposium International on Combustion. The Combustion Institute, Pittsburgh (1996)Google Scholar
  60. 60.
    Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A 5(6), 1282–1284 (1993)zbMATHCrossRefGoogle Scholar
  61. 61.
    Cook, A.W., Riley, J.J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids A 6(8), 2868–2870 (1994)CrossRefGoogle Scholar
  62. 62.
    Cook, A.W.: Determination of the constant coefficient in scale similarity models of turbulence. Phys. Fluids A 9(5), 1485–1487 (1997)zbMATHCrossRefGoogle Scholar
  63. 63.
    Cook, A.W., Bushe, W.K.: A subgrid-scale model for the scalar dissipation rate in non premixed combustion. Phys. Fluids A 11(3), 746–748 (1999)zbMATHCrossRefGoogle Scholar
  64. 64.
    Réveillon, J., Vervisch, L.: Response of the dynamic LES model to heat release induced effects. Phys. Fluids A 8(8), 2248–2250 (1996)zbMATHCrossRefGoogle Scholar
  65. 65.
    Réveillon, J., Vervisch, L.: Dynamic subgrid pdf modeling for non premixed turbulent combustion. In: Chollet, J.P., Voke, P.R., Kleiser, L. (eds.) Direct and Large Eddy Simulation II, pp. 311–320. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  66. 66.
    Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids A 10(12), 3041–3044 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    DesJardin, P.E., Frankel, S.H.: Large eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys. Fluids A 10(9), 2298–2314 (1998)CrossRefGoogle Scholar
  68. 68.
    Kempf, A., Sadiki, A., Janicka, J.: Prediction of finite chemistry effects using large eddy simulations. In: Proc. of the Combustion Institute, vol. 29, pp. 1979–1985 (2002)Google Scholar
  69. 69.
    Raman, V., Pitsch, H.: Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter refinement procedure. Combust. Flame 142(4), 329–347 (2005)CrossRefGoogle Scholar
  70. 70.
    Pitsch, H., Steiner, H.: Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. In: Proc. of the Combustion Institute, vol. 28, pp. 41–49 (2000)Google Scholar
  71. 71.
    Pitsch, H.: Improved pollutant predictions in large eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. In: Proc. of the Combustion Institute, vol. 29, pp. 1971–1978 (2002)Google Scholar
  72. 72.
    Germano, M., Maffio, A., Sello, S., Mariotti, G.: On the extension of the dynamic modelling procedure to turbulent reacting flows. In: Chollet, J.P., Voke, P.R., Kleiser, L. (eds.) Direct and Large Eddy Simulation II, pp. 291–300. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  73. 73.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion. Part II: Dynamic formulation. Combust. Flame 131(1/2), 181–197 (2002)CrossRefGoogle Scholar
  74. 74.
    Schlüter, J., Pitsch, H., Moin, P.: Large eddy simulation inflow conditions for coupling with reynolds-averaged flow solvers. AIAA Journal 42(3), 478–484 (2004)CrossRefGoogle Scholar
  75. 75.
    Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modelling: Dns of premixed v-flame, les of lifted nonpremixed flame and rans of jet flame. J. Turbulence 5, 4 (2004)CrossRefGoogle Scholar
  76. 76.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation. J. Comput. Phys. 186(2), 652–665 (2003)zbMATHCrossRefGoogle Scholar
  77. 77.
    Coiffet, F., Delville, J., Lamballais, E.: Dns/les of a turbulent mixing layer using instantaneous experimental data as inflow conditions. In: Castro, I.P., Hancock, P.E., Thomas, T.G. (eds.) 9th European Turbulence Conference, Barcelona, Spain. CIMNE (2002)Google Scholar
  78. 78.
    Lamballais, E., Bonnet, J.P.: Dns/les data processing and its relation with experiments. In: Riethmuller, M.L., Millan, P. (eds.) Post-processing of experimental and numerical data. Lecture Series 2002-04. Von Karman Institute for Fluid Dynamics (2002)Google Scholar
  79. 79.
    Schlüter, J., Wu, X., Kim, S., Alonso, J.J., Pitsch, H.: Integrated rans-les of a realistic gas turbine compressor / combustor assembly. In: Annual Research Briefs, pp. 117–129. Center for Turbulence Research, NASA Ames/Stanford Univ. (2004)Google Scholar
  80. 80.
    Schlüter, J., Wu, X., Weide, E.v.d., Hahn, S., Herrmann, M., Alonso, J.J., Pitsch, H.: A python approach to multi-code simulations: Chimps. In: Annual Research Briefs, pp. 97–110. Center for Turbulence Research, NASA Ames/Stanford Univ. (2005)Google Scholar
  81. 81.
    Schlüter, J., Apte, S., Kalitzin, G., Weide, E.v.d., Alonso, J.J., Pitsch, H.: Large-scale integrated les-rans simulations of a gas turbine engine. In: Annual Research Briefs, pp. 111–120. Center for Turbulence Research, NASA Ames/Stanford Univ. (2005)Google Scholar
  82. 82.
    Staffelbach, G., Gicquel, L.Y.M., Poinsot, T.: Highly parallel large eddy simulations of multiburner configurations in industrial gas turbines. In: The Cyprus International Symposium on Complex Effects in Large Eddy Simulations (2005)Google Scholar
  83. 83.
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6, 35 (2004)CrossRefGoogle Scholar
  84. 84.
    van der Bos, F., Tao, B., Meneveau, C., Katz, J.: Effects of small-scale turbulent motions on the filtered velocity gradient tensor as deduced from holographic particle image velocimetry measurements. Phys. Fluids 14(7), 2456–2474 (2002)CrossRefMathSciNetGoogle Scholar
  85. 85.
    Tao, B., Katz, J., Meneveau, C.: Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J. Fluid. Mech. 457, 35–78 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Veynante, D.: Theoretical and practical issues for the comparison between les and experimental data. In: First Workshop on Quality Assessment of Unsteady Methods for Turbulent Combustion Prediction and Validation, Seeheim -Jugenheim, Germany (2005)Google Scholar
  87. 87.
    Veynante, D., Knikker, R.: Comparison between les results and experimental data in reacting flows. J. of Turb. 7(35), 1–20 (2006)CrossRefMathSciNetGoogle Scholar
  88. 88.
    Boger, M., Veynante, D.: Large eddy simulations of a turbulent premixed v-shape flame. In: Eighth European Turbulence Conference, Barcelona, Spain (2000)Google Scholar
  89. 89.
    Shepherd, I.G., Moss, J.B., Bray, K.N.C.: Turbulent transport in confined premixed flame. In: 19th Symposium (International) on Combustion, pp. 423–431. The Combustion Institute, Pittsburgh (1982)Google Scholar
  90. 90.
    Veynante, D., Piana, J., Duclos, J.M., Martel, C.: Experimental analysis of flame surface density model for premixed turbulent combustion. In: Twenty-sixth Symposium (International) on Combustion, pp. 413–420. The Combustion Institute (1996)Google Scholar
  91. 91.
    Bailly, P., Garréton, D., Simonin, O., Bruel, P., Champion, M., Deshaies, B., Duplantier, S., Sanquer, S.: Experimental and numerical study of a premixed flame stabilized by a rectangular section cylinder. In: Twenty-sixth Symposium (International) on Combustion, pp. 923–930. The Combustion Institute (1996)Google Scholar
  92. 92.
    Kim, W.W., Menon, S., Mongia, H.C.: Large eddy simulation of a gas turbine combustor flow. Combust. Sci. Tech. 143, 25–62 (1999)CrossRefGoogle Scholar
  93. 93.
    Sommerer, Y., Galley, D., Poinsot, T., Ducruix, S., Lacas, F., Veynante, D.: Simulation and experimental study of flash-back andblow-off in a lean partially premixed swirled burner. J. Turbulence 5 (2004)Google Scholar
  94. 94.
    Lartigue, G.: Simulation aux grandes échelles de la combustion turbulente. Ph.D thesis, INP Toulouse (2004)Google Scholar
  95. 95.
    Goncalves dos Santos, R., Lecanu, M., Ducruix, S., Gicquel, O., Iacona, E., Veynante, D.: Large eddy simulations of combustion / radiative heat transfers coupling using the specialised communication language corba. In: The Cyprus International Symposium on Complex Effects in Large Eddy Simulations, Limassol, Cyprus (2005)Google Scholar
  96. 96.
    Schmitt, P., Schuermans, B., Geigle, K., Poinsot, T.: Effects of radiation, wall heat loss and effusion cooling on flame stabilisation and pollutant prediction in les of gas turbine combustion. In: ECCOMAS thematic conference on computational combustion, Lisbon, Portugal (2005)Google Scholar
  97. 97.
    Henning, M., Vinoski, S.: Advanced CORBA Programming with C++. Addison-Wesley, Reading (1999)Google Scholar
  98. 98.
    Lecanu, M.: Couplage muti-physique combustion turbulente - rayonnement - cinétique chimique. Ph.D thesis, Ecole Centrale Paris (2005)Google Scholar
  99. 99.
    Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory and Modelling 1, 41–63 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)CrossRefGoogle Scholar
  101. 101.
    Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ildm with differential diffusion. In: Proc. of the Combustion Institute, vol. 28, pp. 1901–1908 (2000)Google Scholar
  102. 102.
    van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of premixed laminar flames using flamelet generated manifolds. Combust. Flame 127, 2124–2134 (2001)CrossRefGoogle Scholar
  103. 103.
    de Goey, L.P.H., van Oijen, J.A., Bongers, H., Groot, G.R.A.: New flamelet based reduction methods: the bridge between chemical reduction techniques and flamelet methods. In: European Combustion Meeting, Orléans, France (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Denis Veynante
    • 1
  1. 1.Laboratoire E.M2.C.CNRS et Ecole Centrale ParisChâtenay-MalabryFrance

Personalised recommendations