Advertisement

Studies of Bubbly Channel Flows by Direct Numerical Simulations

  • Gretar Tryggvason
  • Jiacai Lu
  • Souvik Biswas
  • Asghar Esmaeeli
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 105)

Abstract

Recent DNS studies of buoyant bubbly flows in vertical channels are discussed. Simulations of nearly spherical bubbly flows in vertical channels show that the bubbles move towards the walls for upflow and away from the walls for downflow in such a way that the core is in hydrostatic equilibrium. For downflow the wall-layer is free of bubbles but for upflow there is an excess of bubbles in the wall-layer. The liquid velocity in the core is nearly uniform. For laminar downflow the velocity in the wall-layer can be computed analytically and for turbulent flow the velocity is given (almost) by the law of the wall. For upflow the velocity in the wall-layer is strongly influenced by the presence of the bubbles. We conclude by discussing briefly bubble coalescence and topology induced flow regime changes.

Keywords

Direct Numerical Simulation Void Fraction Multiphase Flow Bubble Size Lift Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rawahi, N., Tryggvason, G.: Computations of the growth of dendrites in the presence of flow. Part I-Two-dimensional Flow. J. Comput. Phys. 180, 471–496 (2002)zbMATHGoogle Scholar
  2. Al-Rawahi, N., Tryggvason, G.: Numerical simulation of dendritic solidification with convection: Three-dimensional flow. J. Comput Phys. 194, 677–696 (2004)zbMATHCrossRefGoogle Scholar
  3. Antal, S.P., Lahey Jr., R.T., Flaherty, J.E.: Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow. Int’l. J. Multiphase Flow 17, 635–652 (1991)zbMATHCrossRefGoogle Scholar
  4. Bunner, B., Tryggvason, G.: Dynamics of Homogeneous Bubbly Flows: Part 1. Rise Velocity and Microstructure of the Bubbles. J. Fluid Mech. 466, 17–52 (2002)zbMATHMathSciNetGoogle Scholar
  5. Bunner, B., Tryggvason, G.: Dynamics of Homogeneous Bubbly Flows. Part 2, Fluctuations of the Bubbles and the Liquid. J. Fluid Mech. 466, 53–84 (2002)zbMATHMathSciNetGoogle Scholar
  6. Bunner, B., Tryggvason, G.: Effect of Bubble Deformation on the Stability and Properties of Bubbly Flows. J. Fluid Mech. 495, 77–118 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Deckwer, W.-D.: Bubble Column Reactors. In: Field, R.W. (ed.) Translated by Cottrell, V. John Wiley and Sons Inc., Chichester (1992)Google Scholar
  8. Delhay, J.M.: Handbook of Multiphase Systems. In: Hetsroni, G. (ed.). Hemisphere-McGraw Hill, New York (1982)Google Scholar
  9. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer, Heidelberg (1999)Google Scholar
  10. Ervin, E.A., Tryggvason, G.: The Rise of Bubbles in a Vertical Shear Flow. ASME J. Fluid Engineering 119, 443–449 (1997)CrossRefGoogle Scholar
  11. Esmaeeli, A., Tryggvason, G.: Direct Numerical Simulations of Bubbly Flows. Part I-Low Reynolds Number Arrays. J. Fluid Mech. 377, 313–345 (1998)zbMATHGoogle Scholar
  12. Esmaeeli, A., Tryggvason, G.: Direct Numerical Simulations of Bubbly Flows. Part II—Moderate Reynolds Number Arrays. J. Fluid Mech. 385, 325–358 (1999)zbMATHGoogle Scholar
  13. Esmaeeli, A., Tryggvason, G.: A DNS study of the buoyant rise of bubbles at O(100) Reynolds numbers. Physics of Fluids 17(093303), 19 pages (2005)Google Scholar
  14. Esmaeeli, A., Tryggvason, G.: Computations of Explosive Boiling in Microgravity. J. Scientific Computing 19, 163–182 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Esmaeeli, A., Tryggvason, G.: A Front Tracking Method for Computations of Boiling in Complex Geometries. Int’l. J. Multiphase Flow 30, 1037–1050 (2004)zbMATHCrossRefGoogle Scholar
  16. Esmaeeli, A., Tryggvason, G.: Computations of Film Boiling. Part I: Numerical Method. Int’l. J. Heat and Mass Transfer 47, 5451–5461 (2004)zbMATHGoogle Scholar
  17. Esmaeeli, A., Tryggvason, G.: Computations of Film Boiling. Part II: Multi-mode Film Boiling 47, 5463–5476 (2004)zbMATHGoogle Scholar
  18. Fernandez, A., Che, J., Ceccio, S.L., Tryggvason, G.: The Effects of Electrostatic Forces on the distribution of Drops in a Channel Flow — Two-Dimensional Oblate Drops. Phys. Fluids 17, 093302 (15 pages) (2005)CrossRefGoogle Scholar
  19. Fortes, A., Joseph, D.D., Lundgren, T.: Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177, 467–483 (1987)CrossRefGoogle Scholar
  20. Furusaki, S., Fan, L.-S., Garside, J.: The Expanding World of Chemical Engineering, 2nd edn. Taylor & Francis, Abington (2001)Google Scholar
  21. Guet, S., Ooms, G., Oliemans, R.V.A.: Simplified two-fluid model for gas-lift efficiency predictions. AIChe Journal 51, 1885–1896 (2005)CrossRefGoogle Scholar
  22. Guet, S., Ooms, G., Oliemans, R.V.A., Mudde, R.F.: Bubble size effect on low liquid input drift-flux parameters. Chem. Engr. Science 59, 3315–3329 (2004)CrossRefGoogle Scholar
  23. Guet, S., Ooms, G.: Fluid Mechanical Aspects of the Gas-Lift Technique. Ann. Review Fluid Mech. 38, 225–249 (2006)CrossRefGoogle Scholar
  24. Hewitt, G.F., Roberts, D.N.: Studies of two-phase flow patterns by simultaneous X-ray and flash photography. UKAEA Report AERE-M2159 (1969)Google Scholar
  25. Juric, J., Tryggvason, G.: Computations of Boiling Flows. Int’l. J. Multiphase Flow 24, 387–410 (1998)zbMATHCrossRefGoogle Scholar
  26. Kachanov, M., Sevostianov, I.: On quantitative characterization of microstructures and effective properties. Int’l. J. Solids and Structures 42, 309–336 (2005)zbMATHCrossRefGoogle Scholar
  27. Kashinsky, O.N., Randin, V.V.: Downward bubbly gas-liquid flow in a vertical pipe. Int’l. J. Multiphase Flow 25, 109–138 (1999)zbMATHCrossRefGoogle Scholar
  28. Koynov, A., Tryggvason, G., Khinast, J.G.: Mass Transfer and Chemical Reactions in Bubble Swarms with Dynamic Interfaces. AIChE Journal 10, 2786–2800 (2005)CrossRefGoogle Scholar
  29. Koynov, A., Tryggvason, G., Schlüter, M., Khinast, J.G.: Mass Transfer and Chemical Reactions in Reactive Deformable Bubble Swarms. Appl. Phys. Lett. 88, 134102 (3 pages) (2006)CrossRefGoogle Scholar
  30. Kuo, T.C., Pan, C., Chieng, C.C.: Eulerian-Lagrangian Computations on phase distribution of two-phase bubbly flows. Int’l. J. Num. Meth. Fluids 24, 579–593 (1997)zbMATHCrossRefGoogle Scholar
  31. Ladd, A.J.C.: Dynamical simulations of sedimenting spheres. Phys. Fluids A 5, 299–310 (1993)CrossRefGoogle Scholar
  32. Liu, T.-J.: Investigation of the wall shear stress in vertical bubbly flow under different bubble size conditions. Int’l. J. Multiphase Flow 23, 1085–1109 (1997)zbMATHCrossRefGoogle Scholar
  33. Liu, T.-J., Bankoff, S.G.: Structure of air-water bubbly flow in vertical pipe. Part II. Int’l. J. Heat Mass Transfer 36, 1049–1060 (1993)CrossRefGoogle Scholar
  34. Lopez-De-Bertodano, M., Lahey Jr., R.T., Jones, O.C.: Development of a k-ε model for bubbly two-phase flow. J. Fluids Engineering 13, 327–343 (1987)Google Scholar
  35. Lopez-De-Bertodano, M., Lahey Jr., R.T., Jones, O.C.: Phase distribution in bubbly two-phase flows in vertical ducts. Int’l. J. Multiphase Flow 20, 805–818 (1994)CrossRefGoogle Scholar
  36. Lu, J., Fernandez, A., Tryggvason, G.: The effect of bubbles on the wall shear in a turbulent channel flow. Physics of Fluids 17, 095102 (12 pages) (2005)CrossRefGoogle Scholar
  37. Lu, J., Tryggvason, G.: Numerical study of turbulent bubbly downflows in a vertical channel. Physics of Fluids 18, 103302 (2006)CrossRefGoogle Scholar
  38. Lu, J., Tryggvason, G.: Effect of Bubble Size in Turbulent Bubbly Downflow in a Vertical Channel. Chem. Engr. Science 62, 3008–3018 (2007)CrossRefGoogle Scholar
  39. Lu, J., Biswas, S., Tryggvason, G.: A DNS study of laminar bubbly flows in a vertical channel. Int’l. J. Multiphase Flow 32, 643 (2006)zbMATHCrossRefGoogle Scholar
  40. Luo, R., Pan, X.H., Yang, X.Y.: Laminar light particle and liquid two-phase flows in a vertical pipe. Int’l. J. Multiphase Flow 29, 603–620 (2003)zbMATHCrossRefGoogle Scholar
  41. Nas, S., Tryggvason, G.: Thermocapillary interaction of two bubbles or drops. Int’l. J. Multiphase Flows 29, 1117–1135 (2003)zbMATHCrossRefGoogle Scholar
  42. Nas, S., Muradoglu, M., Tryggvason, G.: Pattern Formation of Drops in Thermocapillary Migration. Int’l. J. Heat and Mass Transfer 49, 2265–2276 (2006)CrossRefGoogle Scholar
  43. Samaras, V.C., Margaris, D.P.: Two-phase flow regime maps for air-lift pump vertical upward gas-liquid flow. Int’l. J. Multiphase Flow 31, 757–766 (2005)zbMATHCrossRefGoogle Scholar
  44. Sangani, A.S., Didwania, A.K.: Dynamics simulations of flows of bubbly liquids at large Reynolds numbers. J. Fluid Mech. 250, 307–337 (1993)zbMATHCrossRefGoogle Scholar
  45. Serizawa, A., Kataoka, I., Michiyoshi, I.: Turbulence structure of air-water bubbly flow. II Local properties. Int’l. J. Multiphase Flow 2, 235–246 (1975)CrossRefGoogle Scholar
  46. Serizawa, A., Kataoka, I., Michiyoshi, I.: Turbulence structure of air-water bubbly flow III Transport properties. Int’l. J. Multiphase Flow 2, 247–259 (1975)CrossRefGoogle Scholar
  47. Smereka, P.: On the motion of bubbles in a periodic box. J. Fluid Mech. 254, 79–112 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  48. So, S., Morikita, H., Takagi, S., Matsumoto, Y.: Laser Doppler velocimetry measurement of turbulent bubbly channel flow. Experiments in Fluids 33, 135–142 (2002)Google Scholar
  49. Song, Q., Luo, R., Yang, X.Y., Wang, Z.: Phase distributions for upward laminar dilute bubbly flows with non-uniform bubble sizes in a vertical pipe. Int’l. J. Multiphase Flow 27, 379–390 (2001)zbMATHCrossRefGoogle Scholar
  50. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A Front Tracking Method for the Computations of Multiphase Flow. J. Comput. Physics 169, 708–759 (2001)zbMATHCrossRefGoogle Scholar
  51. Unverdi, S.O., Tryggvason, G.: A Front Tracking Method for Viscous Incompressible Flows. J. Comput. Physics 100, 25–37 (1992)zbMATHCrossRefGoogle Scholar
  52. Wallis, G.B.: One-dimensional Two-phase Flow. McGraw-Hill, New York (1969)Google Scholar
  53. Wang, S.K., Lee, S.J., Jones, O.C., Lahey Jr., R.T.: 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int’l. J. Multiphase Flow 13, 327–343 (1987)CrossRefGoogle Scholar
  54. Wetzel, E.D., Tucker III, C.L.: Area tensors for modeling microstructure during laminar liquid-liquid mixing. Int’l. J. Multiphase Flow 25, 35–61 (1999)zbMATHCrossRefGoogle Scholar
  55. Zhang, D.Z., Prosperetti, A.: Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185–219 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gretar Tryggvason
    • 1
  • Jiacai Lu
    • 1
  • Souvik Biswas
    • 1
  • Asghar Esmaeeli
    • 2
  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.Southern Illinois UniversityCarbondaleUSA

Personalised recommendations