Supersonic and Hypersonic Boundary-Layer Flows

  • Christian Stemmer
  • Nikolaus A. Adams
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 105)


Supersonic and hypersonic numerical research activities of the “Lehrstuhl für Aerodynamik” at the Technische Universität München are presented in this paper.

Based on the ADM (Approximate Deconvolution Method), LES simulations of a turbulent ramp flow with a subsequent decompression corner at M=2.95 are conducted (the Reynolds number based on the boundary-layer thickness at the inflow is \(Re_{\delta_0}=63 560\) or Re θ = 4705). The results excellently compare with the experimental findings by Zheltovodov et al. [27] and show the feasibility of such large-scale simulation albeit their large computer resource requirements. These simulations predict flow phenomena like the slow motion shock oscillations which can not be captured with RANS simulations. The skin friction, surface pressure and heat transfer can also be predicted correctly in contrast to RANS simulations.

For the hypersonic research, flat-plate boundary layers are investigated to examine the influence of chemical and thermal non-equilibrium on laminar-turbulent transition with direct numerical simulations. This encompasses the modeling of the chemical reactions of dissociating gas and the variable thermodynamic properties which depend on species concentrations. A second temperature describing the vibrational degrees of freedom of the molecules involved is used to model the thermal non-equilibrium. The direct numerical simulations reveal a changing disturbance evolution for equilibrium and non-equilibrium calculations.


Direct Numerical Simulation Disturbance Amplitude RANS Simulation Thermal Nonequilibrium Disturbance Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, N.A., Shariff, K.: A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems. J. of Comp. Phys. 127, 27–51 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adams, N.A.: Direct Numerical Simulation of Turbulent Compression Ramp Flow. Theor. and Comp. Fl. Dynamics 12, 109–129 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Adams, N.A.: Direct Simulation of the Turbulent Boundary Layer Along a Compression Ramp at M=3 and Reθ=1685. J. of Fluid Mech. 420, 47–83 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Adams, N.A., Stolz, S.: A Deconvolution Approach for Shock-Capturing. J. of Comp. Phys. 178, 391–426 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Anderson, J.D.: Hypersonic and and High Temperature Gas Dynamics. AIAA publication (1989)Google Scholar
  6. 6.
    Bertolotti, F.P.: The influence of rotational and vibrational energy relaxation on boundary-layer flow. J. Fluid Mech. 372, 93–118 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bertin, J.J., Cummings, R.M.: Critical Hypersonic Aerothermodynamic Phenomena. Ann. Rev. Fluid Mech. 38, 129–157 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Candler, G.V.: Chemistry of external flows. Aerothermochemistry for Hypersonic Technology, VKI-LS 1995-04 (1995)Google Scholar
  9. 9.
    Floryan, J.M.: On the Görtler instability of boundary layers. Prog. Aerospace Sci. 28, 235–271 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gupta, R.N., Yos, M.J., Thompson, R.A., Lee, K.P.: A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30,000K. NASA RP-1232 (1990)Google Scholar
  11. 11.
    Johnson, H.B., Seipp, T.G., Candler, G.V.: Numerical study of hypersonic reacting boundary layer transition on cones. Physics of Fluids 10, 2676–2685 (1998)CrossRefGoogle Scholar
  12. 12.
    Lele, S.K.: Compact Finite-Difference Schemes With Spectral-Like Resolution. J. Comp. Phys. 103, 16–42 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Loginov, M.S., Adams, N.A., Zheltovodov, A.A.: Large-eddy simulation of shock-wave/turbulent boundary-layer interaction. J. Fluid Mech. 565, 135–169 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Mack, L.M.: Boundary-Layer Stability Theory, JPL Report 900-277 Rev. A, Jet Propulsion Laboratory, Pasadena, USA (1969)Google Scholar
  15. 15.
    Mironov, S.G., Maslov, A.A.: Experimental study of secondary stability in a hypersonic shock layer on a flat plate. J. Fluid Mech. 412, 259–277 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Park, C.: A Review of Reaction Rates in High Temperature Air. AIAA Paper 89-1740 (1989)Google Scholar
  17. 17.
    Pirozzoli, S., Grasso, F., Gatski, T.B.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Physics of Fluids 16, 530–545 (2004)CrossRefGoogle Scholar
  18. 18.
    Sarma, G.S.R.: Physico-chemical modeling in hypersonic flow simulation. Progress in Aerospace Science 36, 281–349 (2000)CrossRefGoogle Scholar
  19. 19.
    Stemmer, C., Mansour, N.N.: DNS of transition in hypersonic boundary-layer flows including high-temperature gas effects. In: Annual Research Briefs 2001, Center for Turbulence Research, Stanford University, NASA Ames, pp. 143–150 (2001)Google Scholar
  20. 20.
    Stemmer, C.: Transition investigations on hypersonic flat-plate boundary layers flows with chemical and thermal non-equilibrium. In: Govindarajan, R. (ed.) Sixth IUTAM Symposium on Laminar-Turbulent Transition IUTAM-Symposium, Bangalore, India, December 13-18, pp. 363–368. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Stemmer, C.: Hypersonic Transition Investigation. In: A Flat-Plate Boundary-Layer Flow at M=20. AIAA Paper 2005-5136 (2005)Google Scholar
  22. 22.
    Stolz, S., Adams, N.A., Kleiser, L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015 (2001)CrossRefGoogle Scholar
  23. 23.
    Stolz, S., Adams, N.A., Kleiser, L.: The approximate deconvolution model for large-eddy simulation of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13, 2985–3001 (2001)CrossRefGoogle Scholar
  24. 24.
    Schneider, S.P.: Flight data for boundary-layer transition at hypersonic and supersonic speeds. J. of Spacecraft and Rockets 36, 8–20 (1999)CrossRefGoogle Scholar
  25. 25.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comp. Phys. 35, 48–56 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Wu, M., Martin, M.P.: Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp. AIAA Journal 45, 879–889 (2007)CrossRefGoogle Scholar
  27. 27.
    Zheltovodov, A.A., Trofimov, V.M., Schülein, E., Yakovlev, V.N.: An experimental documentation of supersonic turbulent flows in the vicinity of forward- and backward-facing ramps. Tech. Rep, Institute of Theoretical and Applied Mechanics, USSR Academy of Sciences, Novosibirsk (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Stemmer
    • 1
  • Nikolaus A. Adams
    • 1
  1. 1.Lehrstuhl für AerodynamikTechnische Universität MünchenGarching b. MünchenGermany

Personalised recommendations