Advertisement

Compressible Turbulence in Interactions of Supersonic Flows

  • Jean-Paul Dussauge
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 105)

Abstract

Some situations of distorted supersonic flow are considered here. Some peculiarities of compressible turbulence in shear flows are firstly recalled. Some situations in which turbulence does not modify the source of energy injection, typically rapid distortions, are recalled .Peculiarities introduced by compressibility, with the particular role played by pressure, are recalled. On the other hand a number of shock wave/ boundary layer interactions are discussed, in which there is interaction between turbulence and shock waves. A classification is proposed, according to their ranges of influence. Attention is mainly paid to supersonic interactions for which the origin of the observed unsteadiness is discussed.

Keywords

Shock Wave Supersonic Flow Strouhal Number Normal Shock Separate Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow. Springer, New York (2006)Google Scholar
  2. 2.
    Ristorcelli, J.R.: A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence. Jl. Fluid Mech. 347, 37–70 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Fauchet, G., Bertoglio, J.P.: An analytical expression for the spectrum of compressible turbulence in the low Mach number limit. In: Frisch, U. (ed.) Advances in turbulence VII. Kluwer, Dordrecht (1998)Google Scholar
  4. 4.
    Vreman, A.W., Sandham, N.D., Luo, K.: Compressible mixing layer growth rate and turbulence characteristics. Jl. Fluid Mech. 320, 235–258 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dussauge, J.P., Gaviglio, J.: The rapid expansion of a supersonic turbulent flow: role of the bulk dilatation. Jl. Fluid Mech. 174, 81–112 (1987)CrossRefGoogle Scholar
  6. 6.
    Debiève, J.F.: Etude d’une interaction turbulence/onde de choc. Thèse de Doctorat d’Etat, Univ. d’Aix-Marseille II. Marseille (1983)Google Scholar
  7. 7.
    Debiève, J.F., Gouin, H., Gaviglio, J.: Evolution of the Reynolds stress ten-sor in a shock/turbulence interaction. Indian Journal of Technology 20, 90–97 (1982)zbMATHGoogle Scholar
  8. 8.
    Durbin, P.A., Zeman, O.: Rapid distortion theory for homogeneous com-pressible turbulence with application to modelling. Jl. Fluid Mech. 242, 349–370 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jacquin, L., Cambon, C., Blin, E.: Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids A 5, 2539–2550 (1993)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lighthill, M.J.: On the energy scattered from the interaction of turbu-lence with sound or shock waves. Proc. Cambridge Philos. Soc. 49, 531 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dosanj, D.S., Weeks, T.M.: Interaction of a starting vortex as well as a vortex street with a travelling shock wave. AIAA Jl 3, 216 (1965)CrossRefGoogle Scholar
  12. 12.
    Cambon, C., Sagaut, P.: Spectral approach to compressible turbulence. In: Linear and weakly non-linear theory and modelling. ERCOFTAC Summerschool on CompressibleTurbulence and Mixing, Strasbourg (2005)Google Scholar
  13. 13.
    Culick, F.E.C., Rogers, T.: The response of normal shocks in diffusers. AIAA Journal 21(10), 1382–1390 (1983)zbMATHCrossRefGoogle Scholar
  14. 14.
    Robinet, J.C.: Stabilité linéaire d’un écoulement présentant une onde de choc. Thèse de Doctorat, École Nat. Sup. de l’Aéronautique et de l’Espace, Toulouse (1999)Google Scholar
  15. 15.
    Robinet, J.C.: Étude des instabilités dans une couche limite décollée in-compressible et compressible et réponse de choc oblique à une perturbation. Post Doctorate report, Groupe Supersonique, IUSTI, Marseille (2001)Google Scholar
  16. 16.
    Robinet, J.C., Casalis, G.: Critical interaction of a shock wave with an acoustic wave. Physics of Fluids 13(4) (2001)Google Scholar
  17. 17.
    Knight, D., Yan, H., Panaras, A.G., Zheltovodov, A.: Advance in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences 39, 121–184 (2003)CrossRefGoogle Scholar
  18. 18.
    Garnier, E., Sagaut, P.: Large eddy simulation of shock/ boundary layer interaction. AIAA Journal 40(10) (2002)Google Scholar
  19. 19.
    Sidorenko, A., Piponniau, S., Dupont, P., Debiève, J.F.: Unpublished work, IUSTI, Marseille (2006)Google Scholar
  20. 20.
    Andreopoulos, J., Muck, K.C.: Some new aspects of the shock wave boundary layer interaction in compression ramp flows. J. Fluid Mech. 180, 405–428 (1987)CrossRefGoogle Scholar
  21. 21.
    Dolling, D.S.: Fifty years of shock wave/boundary layer interaction re-search: what next? AIAA Journal 39(8) (2001)Google Scholar
  22. 22.
    Grasso, F., Pirozzoli, S.: Direct numerical simulation of impinging shock wave/ turbulent boundary layer interaction at M=2.25. Phys. Fluids 18, 065113 (2006)CrossRefGoogle Scholar
  23. 23.
    Dussauge, J.P., Dupont, P., Debiève, J.F.: Unsteadiness in shock wave boundary layer interactions with separation. Aeronautical Science and Technology 10, 85–91 (2006)CrossRefGoogle Scholar
  24. 24.
    Debiève, J.F., Dupont, P.: Some multi time-scale aspects in shock wave/boundary layer interaction. In: Conference on Turbulence and Interactions TI 2006, Porquerolles, France (2006)Google Scholar
  25. 25.
    Erengil, M.E., Dolling, D.S.: Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA Journal 29(5) (1991)Google Scholar
  26. 26.
    Thomas, F.O., Putman, C.M., Chu, H.C.: On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interaction. Experiments in Fluids 18, 69–81 (1994)CrossRefGoogle Scholar
  27. 27.
    Dolling, D.S., Or, C.T.: Unsteadiness of the shock wave structure in at-tached and separated compression ramp flows. Experiments in Fluids 3(24-32) (1985)Google Scholar
  28. 28.
    Dolling, D.S., Brusniak, L.: Separation shock motion in fin, cylinder, and compression ramp-induced turbulent interactions. AIAA Journal 27(6) (1989)Google Scholar
  29. 29.
    Bonnet, J.P., Chaput, E., Alaziary de Roquefort, T.: Détermination des fluctuations de pression pariétale dans une interaction onde de choc-couche limite turbulente en écoulement supersonique. Final Report, Convention ONERA 20.391/SAT.2.CDC (1986)Google Scholar
  30. 30.
    Coe, C.F., Chyu, W.J., Dods Jr., J.B.: Pressure fluctuations underlying attached and separated supersonic turbulent boundary layers and shock waves. In: AIAA Paper 73-996, AIAA Aeroacoustics Conference, Seattle, Wash. (1973)Google Scholar
  31. 31.
    Dolling, D.S., Smith, D.R.: Unsteady shock_induced separation in Mach 5 cylinder interactions. AIAA Journal 27(12), 1598–1706 (1989)CrossRefGoogle Scholar
  32. 32.
    Nguyen, A.T.: Décollement instationnaire et charges latérales dans les tuyères propulsives. Thèse de Doctorat, Université de Poitiers, Poitiers (2003)Google Scholar
  33. 33.
    Bourgoing, A.: Instationnarité et dissymétrie d’un écoulement superso-nique décollé dans une tuyère plane, Thèse de doctorat de l’Université Paris 6, Paris (2002)Google Scholar
  34. 34.
    Piponniau, S.: Final Year Report, IUSTI, Université de Provence, Marseille (2005)Google Scholar
  35. 35.
    Jacquin, L.: Private communication (2005)Google Scholar
  36. 36.
    Bourgoing, A., Reijasse, P.H.: Experimental investigation of an unsteady and asymmetrical supersonic separated flow. In: CASI, 8th Aerodynamic Session Symposium, Toronto (2001)Google Scholar
  37. 37.
    Doerffer, P., Szwaba, R.: Shock wave- boundary layer interaction control by streamwise vortices. In: 11th ICTAM Symposium, Warsaw, Poland (2004)Google Scholar
  38. 38.
    Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Planar imaging measurements to study the effect of spanwise structure of upstream turbulent boundary layer on shock induced separation. In: AIAA Paper 2006-324, 44th Aero-space Science Meeting and Exhibit, Reno, Nevada, pp. 2006–2324 (2006)Google Scholar
  39. 39.
    Lee, B.H.K.: Self-sustained shock oscillation on airfoils at transonic speeds. Progress in Aerospace Sciences 37, 147–196 (2001)CrossRefGoogle Scholar
  40. 40.
    Chen, C.P., Sajben, M., Krouttil, J.C.: Shock wave oscillations in a transonic diffuseur flow. AIAA Journal 17(10), 1076–1083 (1979)CrossRefGoogle Scholar
  41. 41.
    Bogar, T.J., Sajben, M., Kroutil, J.C.: Characteristic frequency and length scales in transonic diffuseur flows oscillations. In: AIAAPaper 81-1291 14th Fluid plasma dynamics conference (1981)Google Scholar
  42. 42.
    Sajben, M., Kroutil, J.C.: Effect of initial boundary layer thickness on transonic diffuser flow. AIAA Journal 19(11) (1981)Google Scholar
  43. 43.
    Culick, F.E.C., Rogers, T.: The response of normal shocks in diffusers. AIAA Journal 21(10), 1382–1390 (1983)zbMATHCrossRefGoogle Scholar
  44. 44.
    Robinet, J.C.: Stabilité linéaire d’un écoulement présentant une onde de choc. Thèse de Doctorat, École Nat. Sup. de l’Aéronautique et de l’Espace, Toulouse, France (1999)Google Scholar
  45. 45.
    Robinet, J.C., Casalis, G.: Critical interaction of a shock wave with an acoustic wave. Physics of Fluids 13(4) (2001)Google Scholar
  46. 46.
    Robinet, J.C., Casalis, G.: Shock oscillations in diffuser modeled by a selective noise amplification. AIAA Journal 37(4), 453–459 (1999)CrossRefGoogle Scholar
  47. 47.
    Despré, C., Caruana, D., Mignosi, A., Reberga, O., Correge, M., Gasso, H., Le Balleur, J.C., Girodrou-Lavigne, P.: Buffet active control- experimental and numerical results. In: Symposium RTO.- Active control technology for enhanced performance operational capabilities of aircraft (2000)Google Scholar
  48. 48.
    Despré, C.: Etude expérimentale et numérique du phénomène de trem-blement et de son contrôle en écoulement transsonique bi et tridimensionnel. Thèse de doctorat, Ecole nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France (2001)Google Scholar
  49. 49.
    Galli, A., Bur, R.: Etude de l’interaction de l’oscillation forcée d’une onde de choc avec une couche-limite décollée. 40ème Coll. d’Aéro. Appl., A.A.A.F., Toulouse, France (2005)Google Scholar
  50. 50.
    Bourgoing, A.: Instationnarité et dissymétrie d’un écoulement superso-nique décollé dans une tuyère plane. Thèse de doctorat de l’Université Paris 6, Paris (2002)Google Scholar
  51. 51.
    Bourgoing, A., Reijasse, P.H.: Experimental investigation of an unsteady and asymmetrical supersonic separated flow. In: CASI, 8th Aerodynamic Session Symposium, Toronto (2001)Google Scholar
  52. 52.
    Nguyen, A.T.: Décollement instationnaire et charges latérales dans les tuyères propulsives. Thèse de Doctorat, Université. de Poitiers; Poitiers (2003)Google Scholar
  53. 53.
    Nguyen, A.T., Deniau, H., Girard, S., Alziary de Roquefort, T.: Unsteadiness of flow separation and end-effects regime in a thrust optimised contour rocket nozzle. In: Proceedings of the IUTAM Symposium on Unsteady Separated Flows. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  54. 54.
    Nguyen, A.T., Deniau, H., Girard, S., Alziary de Roquefort, T.: Wall pressure fluctuations in an over-expanded supersonic nozzle. In: AIAA Paper, 02-4001, 38th AIAA Joint Propulsion Conference, Indianapolis (2002)Google Scholar
  55. 55.
    Dupont, P., Haddad, C., Debiève, J.F.: Space and time organization in a shock induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)zbMATHCrossRefGoogle Scholar
  56. 56.
    Crouch, J.D., Garbaruk, A., Magidov, D.: Predicting the onset of flow un-steadiness based on global instability. J. Comput. Phys. 224(2), 924–940 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Ehrenstein, U., Gallaire, F.: Global low-frequency oscillations in a sepa-rating boundary layer flow. In: IUTAM Symposium on Unsteady Separated Flows and their Control, Corfu, Greece (2007)Google Scholar
  58. 58.
    Alizard, F., Robinet, J.C.: Influence of 3D perturbations on separated flows. In: IUTAM Symposium on Unsteady Separated Flows and their Control, Corfu, Greece (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-Paul Dussauge
    • 1
  1. 1.IUSTIUniversité d’Aix-Marseille and UMR CNRSMarseilleFrance

Personalised recommendations