Advertisement

Strongly Anisotropic Turbulence, Statistical Theory and DNS

  • Claude Cambon
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 105)

Abstract

Complete anisotropy of second-order statistics is parametrized in Fourier space, in terms of directional and polarization dependence. This description is shown to be useful to analyze homogeneous anisotropic turbulence, interacting with various body forces and/or in the presence of large-scale ‘mean’ gradients. As far as possible, both statistical theory, ranging from ‘Rapid Distortion Theory’ to nonlinear theories including it, and recent, often original, DNS data are investigated. Applications to strongly anisotropic turbulence are surveyed, in a rotating, then in a stably stratified fluid. The cases of homogeneous shear, simplified MHD with external magnetic field, and weakly compressible quasi-isentropic flows are touched upon using the same theoretical approach.

Keywords

Fourier Space Linear Solution Homogeneous Turbulence Alfven Wave Homogeneous Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press, Cambridge (1953)zbMATHGoogle Scholar
  2. 2.
    Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31, 1–53 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cambon, C., Rubinstein, R.: Anisotropic developments for homogeneous shear flows. Phys. Fluids 18, 085106 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kassinos, S., Reynolds, W.C., Rogers, M.: One-point turbulence structure tensors. J. Fluid Mech. 428, 213–248 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Arad, I., L’vov, V.S., Procaccia, I.: Correlation functions in isotropic and anisotropic turbulence: the role of the symmetry group. Phys. Rev. E 59, 6753–6765 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Written reports by Craya, Ph.D and P.S.T, in French, being unavailable or too abridged, more information can be obtained from the author upon requestGoogle Scholar
  7. 7.
    Herring, J.R.: Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17, 859–872 (1974)zbMATHCrossRefGoogle Scholar
  8. 8.
    Townsend, A.A.: The structure of turbulent shear flow. Cambridge University Press, Cambridge (1956/1976)zbMATHGoogle Scholar
  9. 9.
    Craik, A.D.D., Criminale, W.O.: Evolution of wavelike disturbances in shear flows: a class of exact solutions of Navier-Stokes equations. Proc. R. Soc. London Ser. A 406, 13–26 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Orszag, S.A.: Analytical theories of turbulence. J. Fluid Mech. 41, 363 (1970)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kaneda, Y.: Lagrangian Renormalized Approximation of Turbulence. Fluid Dynamic Research (to appear) (2006)Google Scholar
  12. 12.
    Kaneda, Y.: Present conference, keynote lectureGoogle Scholar
  13. 13.
    Cambon, C., Jacquin, L.: Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295–317 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Waleffe, F.: Inertial transfers in the helical decomposition. Phys. Fluids A 5, 677–685 (1993)zbMATHCrossRefGoogle Scholar
  15. 15.
    Bos, W.J.T., Bertoglio, J.-P.: Dynamics of spectrally truncated inviscid turbulence. Phys. Fluids 18, 071701 (2006)CrossRefGoogle Scholar
  16. 16.
    Brachet, M.: GDR turbulence, ESPI, Paris, France, November 26 (2005)Google Scholar
  17. 17.
    Bos, W.J.T., Bertoglio, J.-P.: A single-time two-point closure based on fluid particle displacements. Phys. Fluids 18, 031706 (2006)CrossRefGoogle Scholar
  18. 18.
    Godeferd, F.S., Lollini, L.: DNS of turbulence with confinment and rotation. J. Fluid Mech. 393, 257–308 (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Greenspan, H.P.: The theory of rotating fluids. Cambridge University Press, Cambridge (1968)zbMATHGoogle Scholar
  20. 20.
    Cambon, C., Mansour, N.N., Godeferd, F.S.: Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303–332 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Bellet, F., Godeferd, F.S., Scott, J.F., Cambon, C.: Wave-turbulence in rapidly rotating flows. J. Fluid Mech. 552, 83–121 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Galtier, S.: A weak inertial wave-turbulence theory. Phys. Rev. E 68, 1–4 (2003)CrossRefGoogle Scholar
  23. 23.
    Cambon, C., Rubinstein, R., Godeferd, F.S.: Advances in wave-turbulence: rapidly rotating flows. New Journal of Physics 6, 73 (2004)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Jacquin, L., Leuchter, O., Cambon, C., Mathieu, J.: Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 1–52 (1990)zbMATHCrossRefGoogle Scholar
  25. 25.
    Bartello, P., Métais, O., Lesieur, M.: Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 1–29 (1994)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Morize, C., Moisy, F., Rabaud, M.: Decaying grid-generated turbulence in a rotating tank. Phys. Fluids 17(9), 095105 (2005)CrossRefGoogle Scholar
  27. 27.
    Gence, J.-N., Frick, C.: C. R. Acad. Sci. Paris. Série II b, vol. 329, p. 351 (2001)Google Scholar
  28. 28.
    Davidson, P.A., Stapelhurst, P.J., Dalziel, S.B.: On the evolution of eddies in a rapidly rotating system. J. Fluid Mech. 557, 135–144 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Liechtenstein, L., Godeferd, F.S., Cambon, C.: Nonlinear formation of structures in rotating stratified turbulence. Journal of Turbulence 6, 1–18 (2005)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Godeferd, F.S., Cambon, C.: Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6, 284–2100 (1994)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Riley, J.J., Metcalfe, R.W., Weissman, M.A.: DNS of homogeneous turbulence in density-stratified fluids. In: West, B.J. (ed.) Proc. of AIP Conference on Nonlinear Properties of Internal Waves, New York, pp. 79–112. American Institute of Physics (1981)Google Scholar
  32. 32.
    Godeferd, F.S., Staquet, C.: Statistical modelling and DNS of decaying stably-stratified turbulence, Part II: Large and small-scale anisotropy. J. Fluid Mech. 486, 115–159 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Liechtenstein, L.: unpublishedGoogle Scholar
  34. 34.
    Billant, P., Chomaz, J.-M.: Phys. Fluids.  13, 1645–1651 (2001)Google Scholar
  35. 35.
    Lindborg, E.: The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242 (2006)zbMATHCrossRefGoogle Scholar
  36. 36.
    Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28, 1085–1087 (1971)Google Scholar
  37. 37.
    Herring, J.R.: J. Atmos. Sci.  37, 969–977 (1980)Google Scholar
  38. 38.
    Smith, L.M., Waleffe, F.: Generation of slow large-scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145–168 (2002)zbMATHCrossRefGoogle Scholar
  39. 39.
    Lee, J.M., Kim, J., Moin, P.: Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561–583 (1990)CrossRefGoogle Scholar
  40. 40.
    Moffatt, K.: J. Fluid Mech.  28(3), 571–592 (1967)Google Scholar
  41. 41.
    Alboussière, T.: GDR dynamo, ENSL, Lyon, France, March 27 (2006)Google Scholar
  42. 42.
    Galtier, S., Nazarenko, S., Newell, A.C., Pouquet, A.: A weak turbulence theory for incompressible MHD. J. Plasma Physics 63, 447–488 (2000)CrossRefGoogle Scholar
  43. 43.
    Simone, A., Coleman, G.N., Cambon, C.: The effect of compressibility in turbulent shear flow: a RDT and DNS study. J. Fluid Mech. 330, 307–338 (1997)zbMATHCrossRefGoogle Scholar
  44. 44.
    Fauchet, G., Shao, L., Wunenberger, R., Bertoglio, J.-P.: An improved two-point closure for weakly compressible turbulence. In: 11 Symp. Turb. Shear Flow, Grenoble, September 8–10 (1997)Google Scholar
  45. 45.
    Jacquin, L., Cambon, C., Blin, E.: Turbulence amplification by a shock wave and Rapid Distortion Theory. Phys. Fluids A 10, 2539–2550 (1993)CrossRefGoogle Scholar
  46. 46.
    Thacker, W.D., Sarkar, S., Gatski, T.B.: Analyzing the influence of compressibility on the rapid pressure-strain rate correlation in turbulent shear flow. TSFP4 meeting and TCFD journal (submitted)Google Scholar
  47. 47.
    Sarkar, S.: The stabilizing effect of compressibility in turbulent shear flows. J. Fluid Mech. 282, 163–286 (1995)zbMATHCrossRefGoogle Scholar
  48. 48.
    Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using DNS. J. Fluid Mech. 451, 329–371 (2002)zbMATHCrossRefGoogle Scholar
  49. 49.
    Cambon, C., Godeferd, F.S., Nicolleau, F., Vassilicos, J.C.: Turbulent diffusion in rapidly rotating flows with and without stable stratification. J. Fluid Mech. 499, 231–255 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Benney, D.J., Newell, A.C.: Random Wave Closure. Studies in Applied Math. 48 (1969)Google Scholar
  51. 51.
    Dang, K., Roy, P.: Numerical simulation of homogeneous turbulence. In: Proc. Workshop on Macroscopic Modelling of Turbulent Flows and Fluid Mixtures. Springer, Heidelberg (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Claude Cambon
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’ Acoustique, École Centrale de LyonUCBL, INSA, CNRSEcully CedexFrance

Personalised recommendations