Advertisement

Burgers, Fisher and Related Equations

  • Abdul-Majid Wazwaz
Part of the Nonlinear Physical Science book series (NPS)

Abstract

In the preceeding three chapters we examined the nonlinear evolution equations that include dispersion terms. In this chapter, we will study the nonlinear evolution equations where each equation contains the dissipative term u xx in addition to other partial derivatives. This new family of nonlinear equations gained its importance because it appears in many scientific applications and physical phenomena.

Keywords

Relate Equation Travel Wave Solution Burger Equation Nonlinear Evolution Equation Fisher Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1, 171–199, (1948).CrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Conte, Exact solutions of nonlinear partial differential equations by singularity analysis, Lecture Notes in Physics, Springer 1–83 (2003).Google Scholar
  3. 3.
    P.G. Drazin and R.S. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge, (1996).Google Scholar
  4. 4.
    R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7, 335–369, (1936).Google Scholar
  5. 5.
    C.K. Hayes, A new traveling-wave solution of Fisher’s equation with density-dependent diffusivity, J. Math. Biol., 29, 531–537, (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulation, 43(1), 13–27, (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge (2004).zbMATHCrossRefGoogle Scholar
  8. 8.
    R. Hirota, Exact N-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14(7), 805–809, (1973).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Malfliet W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60(7), 650–654, (1992).CrossRefGoogle Scholar
  10. 10.
    M. McAsey and L.A. Rubel, Some closed-form solutions of Burgers’ equation, Stu. Appl. Math., 88, 173–190, (1993).zbMATHMathSciNetGoogle Scholar
  11. 11.
    J.D. Murray, Mathematical Biology, Springer, New York, (1993).zbMATHCrossRefGoogle Scholar
  12. 12.
    S. Tang and R.O. Weber, Numerical study of Fisher’s equation by a Petrov-Galerkin finite element method, J. Austral. Math. Soc. Ser., B 33, 27–38, (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Veksler and Y. Zarmi, Wave interactions and the analysis of the perturbed Burgers equation, Physica D, 211, 57–73, (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A.M. Wazwaz, An analytic study of compactons solutions for variants of Kuramoto-Sivanshinsky equation, Appl. Math. Comput., 148, 571–585, (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A.M. Wazwaz, The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equation, Appl. Math. Comput., 169, 321–338, (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A.M. Wazwaz, Travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput., 169, 639–656, (2005).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Abdul-Majid Wazwaz
    • 1
  1. 1.Department of MathematicsSaint Xavier UniversityChicagoUSA

Personalised recommendations