Advertisement

Boussinesq, Klein-Gordon and Liouville Equations

  • Abdul-Majid Wazwaz
Part of the Nonlinear Physical Science book series (NPS)

Abstract

In the preceeding two chapters we examined the family of the KdV and the KdV-type of equations, where the first order partial derivative u t was involved in all these equations [1]. In this chapter, we will study the nonlinear evolution equations where each contains the second order partial derivative u tt in addition to other partial derivatives. This family of nonlinear equations gained its importance because it appears in many scientific applications and physical phenomena.

Keywords

Soliton Solution Travel Wave Solution Liouville Equation Boussinesq Equation Tanh Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Ablowitz and P.A. Clarkson, Solitons: Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991).zbMATHCrossRefGoogle Scholar
  2. 2.
    J. Boussinesq, Theorie des ondes et des remous qui se propagent le long d Run canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55–108, (1872).Google Scholar
  3. 3.
    J. Boyd, Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics, Kluwer, Boston, (1998).zbMATHGoogle Scholar
  4. 4.
    R. Bullough and P. Caudrey, Solitons vol 17 in “Topics in Current Physics”, Springer, Berlin (1980).Google Scholar
  5. 5.
    P.G. Drazin and R.S. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge, (1996).Google Scholar
  6. 6.
    W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulation, 43(1), 13–27, (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge (2004).zbMATHCrossRefGoogle Scholar
  8. 8.
    R. Hirota, Exact N-soliton solutions of a nonlinear wave equation, J. Math Phys., 14(7), 805–809, (1973).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Y. Matsuno, Bilinear Transformation Method, Academic Press, New York, (1984).zbMATHGoogle Scholar
  10. 10.
    A.M. Wazwaz, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167(2), 1179–1195, (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A.M. Wazwaz, The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos, Solitons and Fractals, 25(1) 55–63, (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A.M. Wazwaz, Exact solutions of the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos, Solitons and Fractals, 28, 127–135, (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A.M. Wazwaz, The tanh method: exact solutions of the Sine-Gordon and the Sinh-Gordon equations, Appl. Math. Comput., 167(2), 1196–1210, (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A.M. Wazwaz, The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations, Commun. Nonlinear Sci. Numer. Simul., 13, 584–592, (2008).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Abdul-Majid Wazwaz
    • 1
  1. 1.Department of MathematicsSaint Xavier UniversityChicagoUSA

Personalised recommendations