Skip to main content

The Family of the KdV Equations

  • Chapter
  • First Online:
  • 2468 Accesses

Part of the book series: Nonlinear Physical Science ((NPS))

Abstract

The ubiquitous Korteweg de-Vries (KdV) equation [14] in dimensionless variables reads

$$ u_t+ auu_x+ u_{xxx}= 0, $$
(13.1)

where subscripts denote partial derivatives. The parameter a can be scaled to any real number, where the commonly used values are a=±1 or a=±6. The KdV equation molels a variety of nonlinear phenomena, including ion acoustic waves in plasmas, and shallow water waves. The derivative u t characterizes the time evolution of the wave propagating in one direction, the nonlinear term uu x describes the steepening of the wave, and the linear term u xxx accounts for the spreading or dispersion of the wave. The KdV equation was derived by Korteweg and de Vries to describe shallow water waves of long wavelength and small amplitude. The KdV equation is a nonlinear evolution equation that models a diversity of important finite amplitude dispersive wave phenomena. It has also been used to describe a number of important physical phenomena such as acoustic waves in a harmonic crystal and ion-acoustic waves in plasmas. As stated before, this equation is the simplest nonlinear equation embodying two effects: nonlinearity represented by uu x, and linear dispersion represented by u xxx. Nonlinearity of uu x tends to localize the wave whereas dispersion spreads the wave out. The delicate balance between the weak nonlinearity of uu x and the linear dispersion of u xxx defines the formulation of solitons that consist of single humped waves. The stability of solitons is a result of the delicate equilibrium between the two effects of nonlinearity and dispersion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991).

    Book  Google Scholar 

  2. M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    Book  Google Scholar 

  3. R. Bullough and P. Caudrey, Solitons vol 17 in “Topics in Current Physics”, Springer, Berlin (1980).

    Google Scholar 

  4. P.G. Drazin and R.S. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge, (1996).

    MATH  Google Scholar 

  5. C. Gardner, J. Greene, M. Kruskal and R. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19, 1095–1097, (1967).

    Article  Google Scholar 

  6. W. Hereman and W. Zhaung, Symbolic software for soliton theory, Acta Applicandae Mathematicae. Phys. Lett. A, 76, 95–96, (1980).

    Article  MathSciNet  Google Scholar 

  7. W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulation, 43 13–27, (1997).

    Article  MathSciNet  Google Scholar 

  8. J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys. 28(8), 1732–1742, (1987).

    Article  MathSciNet  Google Scholar 

  9. J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. II. mKdV-type bilinear equations, J. Math. Phys., 28(9), 2094–2101, (1987).

    Article  MathSciNet  Google Scholar 

  10. R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge (2004).

    Book  Google Scholar 

  11. R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27(18), 1192–1194, (1971).

    Article  Google Scholar 

  12. R. Hirota, Exact N-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14(7), 805–809, (1973).

    Article  MathSciNet  Google Scholar 

  13. M. Ito, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Japan, 49(2), 771–778, (1980).

    Article  MathSciNet  Google Scholar 

  14. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary waves, Phil. Mag. 39(5), 422–443, (1895).

    Article  Google Scholar 

  15. Y. Matsuno, Bilinear Transformation Method, Academic Press, New York, (1984).

    MATH  Google Scholar 

  16. R.M. Miura, The Korteweg-de Vries Equation: a survey of results, SIAM Rev., 18, 412–459, (1976).

    Article  MathSciNet  Google Scholar 

  17. A. Nakamura, Simple explode-decay mode solutions of a certain one-space dimensional non-linear evolution equations, J. Phys. Soc. Japan, 33(5), 1456–1458, (1972).

    Article  Google Scholar 

  18. P. Rosenau and J.M. Hyman, Compactons: Solitons with finite wavelengths, Phys. Rev. Lett., 70(5), 564–567, (1993).

    Article  Google Scholar 

  19. A.V. Slyunaev and E.N. Pelinovski, Dynamics of large-amplitude solitons, J. Exper. Theor. Phys., 89(1), 173–181, (1999).

    Article  Google Scholar 

  20. M. Wadati, The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Japan, 32, 1681–1687, (1972).

    Article  Google Scholar 

  21. A.M. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. Nonlinear Sci. Numer. Simul., 12(8), 1395–1404, (2007).

    Article  MathSciNet  Google Scholar 

  22. A.M. Wazwaz, New solitons and kinks solutions to the Sharma-Tasso-Olver equation, Appl. Math. Comput., 188, 1205–1213, (2007).

    MathSciNet  MATH  Google Scholar 

  23. A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188, 1467–1475, (2007).

    MathSciNet  MATH  Google Scholar 

  24. A.M. Wazwaz, The tanh-coth method for new compactons and solitons solutions for the K(n, n) and the K(n+1, n+1) equations. Appl. Math. Comput., 188, 1930–1940, (2007).

    MathSciNet  MATH  Google Scholar 

  25. A.M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method, Appl. Math. Comput., 190, 633–640, (2007).

    MathSciNet  MATH  Google Scholar 

  26. A.M. Wazwaz, Compact and noncompact structures for variants of the KdV equation, Appl. Math. and Comput., 132(1), 29–45, (2002).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wazwaz, AM. (2009). The Family of the KdV Equations. In: Partial Differential Equations and Solitary Waves Theory. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00251-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00251-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00250-2

  • Online ISBN: 978-3-642-00251-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics