GD 2008: Graph Drawing pp 50-60

Cubic Graphs Have Bounded Slope Parameter

• Balázs Keszegh
• János Pach
• Dömötör Pálvölgyi
• Géza Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We show that every finite connected graph G with maximum degree three and with at least one vertex of degree smaller than three has a straight-line drawing in the plane satisfying the following conditions. No three vertices are collinear, and a pair of vertices form an edge in G if and only if the segment connecting them is parallel to one of the sides of a previously fixed regular pentagon. It is also proved that every finite graph with maximum degree three permits a straight-line drawing with the above properties using only at most seven different edge slopes.

Keywords

Maximum Degree Complete Graph Slope Parameter Basic Slope Regular Pentagon
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

1. 1.
Ambrus, G., Barát, J., Hajnal, P.: The slope parameter of graphs. Acta Sci. Math.(Szeged) 72(3–4), 875–889 (2006)
2. 2.
Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electr. J. Combin. 13(1), R3, 14pp. (2006)Google Scholar
3. 3.
Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)
4. 4.
Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38, 181–193 (2007)
5. 5.
Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 129–140. Springer, Heidelberg (2006)
6. 6.
Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: SoCG 2004, pp. 340–346. ACM Press, New York (2004)Google Scholar
7. 7.
Eppstein, D.: Separating thickness from geometric thickness. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Math, vol. 342, pp. 75–86. AMS, Providence (2004)
8. 8.
Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)
9. 9.
Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. 13, 161–171 (1999)
10. 10.
Jamison, R.E.: Few slopes without collinearity. Discrete Math. 60, 199–206 (1986)
11. 11.
Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Sem. Univ. Hamburg 39, 88–95 (1973)
12. 12.
Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 114–125. Springer, Heidelberg (2007)
13. 13.
Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions (manuscript, 2007)Google Scholar
14. 14.
Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs Combin. 14, 59–73 (1998)
15. 15.
Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electr. J. Combin. 13(1), Note 1, 4pp. (2006)Google Scholar
16. 16.
Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. The Computer J. 37, 139–142 (1994)

Authors and Affiliations

• Balázs Keszegh
• 1
• 5
• János Pach
• 2
• 4
• 5
• Dömötör Pálvölgyi
• 3
• 4
• Géza Tóth
• 5
1. 1.Central European UniversityBudapestHungary
2. 2.City College, CUNYNew YorkUSA
3. 3.Eötvös UniversityBudapestHungary
4. 4.Ecole Polytechnique Fédérale de LausanneSwitzerland
5. 5.A. Rényi Institute of MathematicsBudapestHungary