Non-convex Representations of Graphs

  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


We show that every plane graph admits a planar straight-line drawing in which all faces with more than three vertices are non-convex polygons.


Plane Graph Convex Polygon Internal Vertex Outer Face Incident Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aichholzer, O., Rote, G., Schulz, A., Vogtenhuber, B.: Pointed drawings of planar graphs. In: Bose, P. (ed.) CCCG 2007, pp. 237–240 (2007)Google Scholar
  2. 2.
    Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Doc. Math. 11, 369–391 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 153–173. Academic Press, New York (1984)Google Scholar
  4. 4.
    Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three dimensions. In: Symposium on Computational Geometry, pp. 319–328 (1996)Google Scholar
  5. 5.
    Di Battista, G., Frati, F., Patrignani, M.: Non-convex representations of graphs. Tech. Report RT-DIA-134-2008, Dip. Informatica e Automazione, Univ. Roma Tre (2008)Google Scholar
  6. 6.
    Fary, I.: On straight line representations of planar graphs. Acta. Sci. Math. 11, 229–233 (1948)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. Comput. Geometry Theory Appl. 31, 31–61 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hong, S., Nagamochi, H.: Convex drawings of graphs with non-convex boundary. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 113–124. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hong, S., Nagamochi, H.: Star-shaped drawings of planar graphs. In: Brankovich, L., Lin, Y., Smyth, W.F. (eds.) IWOCA 2007. College Publications (2007)Google Scholar
  10. 10.
    Hong, S., Nagamochi, H.: Star-shaped drawing of planar graphs with fixed embedding and concave corner constraints. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 405–414. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Thomassen, C.: Plane representations of graphs. In: Progress in Graph Theory, pp. 43–69. Academic Press, London (1984)Google Scholar
  12. 12.
    Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 10, 304–320 (1960)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 1
  • Maurizio Patrignani
    • 1
  1. 1.Dip. di Informatica e AutomazioneRoma Tre UniversityItaly

Personalised recommendations