Tree Drawings on the Hexagonal Grid

  • Christian Bachmaier
  • Franz J. Brandenburg
  • Wolfgang Brunner
  • Andreas Hofmeier
  • Marco Matzeder
  • Thomas Unfried
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


We consider straight-line drawings of trees on a hexagonal grid. The hexagonal grid is an extension of the common grid with inner nodes of degree six. We restrict the number of directions used for the edges from each node to its children from one to five, and to five patterns: straight, Y, ψ, X, and full. The ψ–drawings generalize hv- or strictly upward drawings to ternary trees.

We show that complete ternary trees have a ψ–drawing on a square of size \(\O(n^{1.262})\) and general ternary trees can be drawn within \(\O(n^{1.631})\) area. Both bounds are optimal. Sub–quadratic bounds are also obtained for X–pattern drawings of complete tetra trees, and for full–pattern drawings of complete penta trees, which are 4–ary and 5–ary trees. These results parallel and complement the ones of Frati [8] for straight–line orthogonal drawings of ternary trees.

Moreover, we provide an algorithm for compacted straight–line drawings of penta trees on the hexagonal grid, such that the direction of the edges from a node to its children is given by our patterns and these edges have the same length. However, drawing trees on a hexagonal grid within a prescribed area or with unit length edges is \(\mathcal{NP}\)–hard.


Binary Tree Line Drawing Grid Line Outgoing Edge Linear Time Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI layouts. Inf. Process. Lett. 25(4), 263–267 (1987)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bloesch, A.: Aestetic layout of generalized trees. Softw. Pract. Exper. 23(8), 817–827 (1993)CrossRefGoogle Scholar
  3. 3.
    Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. Theory Appl. 23(2), 153–162 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl. 2, 187–200 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dolev, D., Trickey, H.W.: On linear area embedding of planar graphs. Tech. Rep. STAN-CS-81-876, Stanford University, Stanford, CA, USA (1981)Google Scholar
  6. 6.
    Dujmović, V., Suderman, M., Wood, D.R.: Really straight graph drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 122–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Eades, P.: Drawing free trees. Bulletin of the Institute of Combinatorics and its Applications 5, 10–36 (1992)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Frati, F.: Straight-line orthogonal drawings of binary and ternary trees. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 76–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Garg, A., Goodrich, M.T., Tamassia, R.: Planar upward tree drawings with optimal area. Int. J. Comput. Geometry Appl. 6(3), 333–356 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. J. Graph Algo. App. 8(2), 135–160 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kant, G.: Hexagonal grid drawings. In: Mulkers, A. (ed.) Live Data Structures in Logic Programs. LNCS, vol. 675, pp. 263–276. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Knuth, D.E.: The Art of Computer Programming, vol. 1. Addison-Wesley, Reading (1968)zbMATHGoogle Scholar
  13. 13.
    Reingold, E.M., Tilford, J.S.: Tidier drawing of trees. IEEE Trans. Software Eng. 7(2), 223–228 (1981)CrossRefGoogle Scholar
  14. 14.
    Shin, C.S., Kim, S.K., Chwa, K.Y.: Area-efficient algorithms for straight-line tree drawings. Comput. Geom. Theory Appl. 15(4), 175–202 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Computers 30(2), 135–140 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Walker, J.Q.W.: A node-positioning algorithm for general trees. Softw. Pract. Exper. 20(7), 685–705 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Bachmaier
    • 1
  • Franz J. Brandenburg
    • 1
  • Wolfgang Brunner
    • 1
  • Andreas Hofmeier
    • 1
  • Marco Matzeder
    • 1
  • Thomas Unfried
    • 1
  1. 1.University of PassauGermany

Personalised recommendations