Drawing (Complete) Binary Tanglegrams

Hardness, Approximation, Fixed-Parameter Tractability
  • Kevin Buchin
  • Maike Buchin
  • Jaroslaw Byrka
  • Martin Nöllenburg
  • Yoshio Okamoto
  • Rodrigo I. Silveira
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


A binary tanglegram is a pair 〈S,T〉 of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a drawing with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number.

We prove that under the Unique Games Conjecture there is no constant-factor approximation for general binary trees. We show that the problem is hard even if both trees are complete binary trees. For this case we give an O(n 3)-time 2-approximation and a new and simple fixed-parameter algorithm. We show that the maximization version of the dual problem for general binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.


Binary Tree Dual Problem Search Tree Recursive Algorithm Complete Binary Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-parameter tractability (2008), Arxiv report
  3. 3.
    DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA 1997), pp. 427–436 (1997)Google Scholar
  4. 4.
    Dujmović, V., Fernau, H., Kaufmann, M.: Fixed Parameter Algorithms for one-sided crossing minimization Revisited. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phylogenetic tree visualization. In: Proc. Australasian Sympos. Inform. Visual ( 2004). CRPIT, vol. 35, pp. 109–115. Australian Comput. Soc. (2004)Google Scholar
  6. 6.
    Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 10, 379–403 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hafner, M.S., Sudman, P.D., Villablanca, F.X., Spradling, T.A., Demastes, J.W., Nadler, S.A.: Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090 (1994)CrossRefGoogle Scholar
  10. 10.
    Holten, D., van Wijk, J.J.: Visual comparison of hierarchically organized data. In: Proc. 10th Eurographics/IEEE-VGTC Sympos. Visualization (EuroVis 2008), pp. 759–766 (2008)Google Scholar
  11. 11.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th Annu. ACM Sympos. Theory Comput (STOC 2002), pp. 767–775 (2002)Google Scholar
  12. 12.
    Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l 1. In: Proc. 46th Annu. IEEE Sympos. Foundat. Comput. Sci. (FOCS 2005), pp. 53–62 (2005)Google Scholar
  13. 13.
    Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M.: Seeded tree alignment and planar tanglegram layout. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 98–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete Comput. Geom. 33(4), 565–591 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Nöllenburg, M., Holten, D., Völker, M., Wolff, A.: Drawing binary tanglegrams: An experimental evaluation. Arxiv report (2008),
  16. 16.
    Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press (2002)Google Scholar
  17. 17.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Maike Buchin
    • 1
  • Jaroslaw Byrka
    • 2
    • 3
  • Martin Nöllenburg
    • 4
  • Yoshio Okamoto
    • 5
  • Rodrigo I. Silveira
    • 1
  • Alexander Wolff
    • 2
  1. 1.Dept. Computer ScienceUtrecht UniversityThe Netherlands
  2. 2.Faculteit Wiskunde en InformaticaTU EindhovenThe Netherlands
  3. 3.Centrum voor Wiskunde en Informatica (CWI)AmsterdamThe Netherlands
  4. 4.Fakultät für InformatikUniversität KarlsruheGermany
  5. 5.Grad. School of Infor. Sci. and EngineeringTokyo Inst. of TechnologyJapan

Personalised recommendations