Advertisement

Connected Rectilinear Graphs on Point Sets

  • Maarten Löffler
  • Elena Mumford
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

Given n points in d-dimensional space, we would like to connect the points with straight line segments to form a connected graph whose edges use d pairwise perpendicular directions. We prove that there exists at most one such set of directions. For d = 2 we present an algorithm for computing these directions (if they exist) in O (n 2) time.

Keywords

Planar Graph Connected Graph Straight Line Segment Great Common Divisor Vertical Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Durocher, S., Kirkpatrick, D.: On the hardness of turn-angle-restricted rectilinear cycle cover problems. In: CCCG 2002, pp. 13–16 (2002)Google Scholar
  2. 2.
    Edelsbrunner, H., Guibas, L.: Topologically sweeping an arrangement. J. Comput. Syst. Sci. 38, 165–194 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Efrat, A., Erten, C., Kobourov, S.: Fixed-location circular-arc drawing of planar graphs. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 147–158. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Fekete, S., Woeginger, G.: Angle-restricted tours in the plane. Comput. Geom. Theory Appl. 8(4), 195–218 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fredman, M.: How good is the information theory bound in sorting? Theoret. Comput. Sci. 1, 355–361 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. on Computing 31(2), 601–625 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hoffman, F., Kriegel, K.: Embedding rectilinear graphs in linear time. Inf. Process. Lett. 29(2), 75–79 (1988)CrossRefGoogle Scholar
  8. 8.
    Jansen, K., Woeginger, G.: The complexity of detecting crossingfree configurations in the plane. BIT 33(4), 580–595 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Löffler, M., Mumford, E.: Connected rectilinear polygons on point sets (2008), http://www.cs.uu.nl/research/techreps/UU-CS-2008-028.html
  10. 10.
    O’Rourke, J.: Uniqueness of orthogonal connect-the-dots. In: Toussaint, G. (ed.) Computational Morphology, pp. 97–104 (1988)Google Scholar
  11. 11.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 263–274. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Rappaport, D.: On the complexity of computing orthogonal polygons from a set of points. Technical Report TR-SOCS-86.9, McGill Univ., Montreal, PQ (1986)Google Scholar
  13. 13.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. on Computing 14(2), 355–372 (1985)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maarten Löffler
    • 1
  • Elena Mumford
    • 2
  1. 1.Dept. Information and Computing SciencesUtrecht UniversityThe Netherlands
  2. 2.Dept. of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations