Embeddability Problems for Upward Planar Digraphs

  • Francesco Giordano
  • Giuseppe Liotta
  • Sue H. Whitesides
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


We study two embedding problems for upward planar digraphs. Both problems arise in the context of drawing sequences of upward planar digraphs having the same set of vertices, where the location of each vertex is to remain the same for all the drawings of the graphs. We develop a method, based on the notion of book embedding, that gives characterization results for embeddability as well as testing and drawing algorithms.


Span Subgraph External Face Satisfying Property Embeddability Problem Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 102–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  3. 3.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science 61(2-3), 175–198 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Enomoto, H., Miyauchi, M.: Embedding graphs into a three page book with O(M logN) crossings of edges over the spine. SIAM J. of Discrete Math. 12(3), 337–341 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Frati, F., Kaufmann, M., Kobourov, S.: Constrained simultaneous and near-simultaneous embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 268–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Giordano, F., Liotta, G., Whitesides, S.: Drawing a sequence of upward planar digraphs: Characterization results and testing algorithms. Tech. rep., Università degli Studi di Perugia, RT-008-01 (2008)Google Scholar
  8. 8.
    Goodman, J.E., Pollack, R.: On the combinatorial classification of nondegenerate configurations in the plane. J. of Combinatorial Theory, Ser. A 29(2), 220–235 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Halton, J.H.: On the thickness of graphs of given degree. Inform. Sciences 54, 219–238 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. J. of Graph Algorithms and Applications 6(1), 67–113 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  13. 13.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combin. 17(4), 717–728 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesco Giordano
    • 1
  • Giuseppe Liotta
    • 1
  • Sue H. Whitesides
    • 2
  1. 1.Università degli Studi di PerugiaItaly
  2. 2.McGill UniversityCanada

Personalised recommendations