Topology Preserving Constrained Graph Layout

  • Tim Dwyer
  • Kim Marriott
  • Michael Wybrow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


Constrained graph layout is a recent generalisation of force-directed graph layout which allows constraints on node placement. We give a constrained graph layout algorithm that takes an initial feasible layout and improves it while preserving the topology of the initial layout. The algorithm supports poly-line connectors and clusters. During layout the connectors and cluster boundaries act like impervious rubber-bands which try to shrink in length. The intended application for our algorithm is dynamic graph layout, but it can also be used to improve layouts generated by other graph layout techniques.


Goal Function Path Segment Topology Constraint Bend Point Cluster Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertault, F.: A force-directed algorithm that preserves edge crossing properties. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 351–358. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bridgeman, S.S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: InteractiveGiotto: An algorithm for interactive orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 303–308. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Dwyer, T., Koren, Y., Marriott, K.: Drawing directed graphs using quadratic programming. IEEE Transactions on Visualization and Computer Graphics 12(4), 536–548 (2006)CrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separation constraint layout of graphs. IEEE Transactions on Visualization and Computer Graphics 12(5), 821–828 (2006)CrossRefGoogle Scholar
  5. 5.
    Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network diagram authoring tool. In: GD 2008. LNCS, vol. 5417. Springer, Heidelberg (to appear, 2009)Google Scholar
  6. 6.
    Dwyer, T., Marriott, K., Wybrow, M.: Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Transactions on Visualization and Computer Graphics (InfoVis 2008) (to appear 2008)Google Scholar
  7. 7.
    Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 8–19. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Eiglsperger, M., Fekete, S.P., Klau, G.W.: Drawing Graphs: Methods and Models, chap. Orthogonal graph drawing, pp. 121–171. Springer, London (2001)CrossRefGoogle Scholar
  9. 9.
    Frishman, Y., Tal, A.: Online dynamic graph drawing. In: Eurographics/IEEE-VGTC Symp. on Visualization. Eurographics Association (2007)Google Scholar
  10. 10.
    Gansner, E., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. In: SODA 2001: Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 246–255. Society for Industrial and Applied Mathematics (2001)Google Scholar
  12. 12.
    He, W., Marriott, K.: Constrained graph layout. Constraints 3, 289–314 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages and Computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  15. 15.
    North, S.C., Woodhull, G.: Online hierarchical graph drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 232–246. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tim Dwyer
    • 1
  • Kim Marriott
    • 1
  • Michael Wybrow
    • 1
  1. 1.Clayton School of Information TechnologyMonash UniversityClaytonAustralia

Personalised recommendations