Topological Morphing of Planar Graphs

  • Patrizio Angelini
  • Pier Francesco Cortese
  • Giuseppe Di Battista
  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


In this paper we study how two planar embeddings of the same biconnected graph can be morphed one into the other while minimizing the number of elementary changes.


Allocation Tree Vertical Edge Horizontal Edge External Face Adjacency List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angelini, P., Cortese, P.F., Di Battista, G., Patrignani, M.: Topological morphing of planar graphs. Tech. Report RT-DIA-134-2008, Dept. of Computer Sci., Univ. di Roma Tre (2008)Google Scholar
  2. 2.
    Auyeung, A., Abraham, A.: Estimating genome reversal distance by genetic algorithm. CoRR cs.AI/0405014 (2004)Google Scholar
  3. 3.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Track planarity testing and embedding. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 3–17. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8(5), 483–491 (2001)CrossRefGoogle Scholar
  5. 5.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840 (2000)CrossRefGoogle Scholar
  6. 6.
    Biedl, T.C., Lubiw, A., Spriggs, M.J.: Morphing planar graphs while preserving edge directions. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cairns, S.S.: Deformations of plane rectilinear complexes. American Math. Monthly 51, 247–252 (1944)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Caprara, A.: Sorting by reversals is difficult. In: RECOMB 1997: Proceedings of the first annual international conference on Computational molecular biology, pp. 75–83. ACM Press, New York (1997)CrossRefGoogle Scholar
  9. 9.
    de Fraysseix, H., Ossona de Mendez, P.: P.I.G.A.L.E - Public Implementation of a Graph Algorithm Library and Editor, sourceForge project page,
  10. 10.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Erten, C., Kobourov, S.G., Pitta, C.: Intersection-free morphing of planar graphs. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 320–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Floater, M., Gotsman, C.: How to morph tilings injectively. Journal of Computational and Applied Mathematics 101, 117–129 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Computers and Graphics 25, 67–75 (2001)CrossRefGoogle Scholar
  14. 14.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. In: SODA 1997, pp. 344–351 (1997)Google Scholar
  15. 15.
    Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph drawings. In: SODA 2006, pp. 222–230. ACM Press, New York (2006)Google Scholar
  16. 16.
    Meidanis, J., Walter, M., Dias, Z.: Reversal distance of sorting circular chromosomes. Tech. Report IC-00-23, Institute of Computing, Universidade Estadual de Campinas (2000)Google Scholar
  17. 17.
    Solomon, A., Sutcliffe, P., Lister, R.: Sorting circular permutations by reversal. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 319–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Tannier, E., Bergeron, A., Sagot, M.F.: Advances on sorting by reversals. Discrete Appl. Math. 155(6-7), 881–888 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Thomassen, C.: Deformations of plane graphs. Journal of Combinatorial Theory, Series B 34, 244–257 (1983)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Pier Francesco Cortese
    • 1
  • Giuseppe Di Battista
    • 1
  • Maurizio Patrignani
    • 1
  1. 1.Università Roma TreItaly

Personalised recommendations