Visual Analysis of One-to-Many Matched Graphs

  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
  • Pietro Palladino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


Motivated by applications of social network analysis and of Web- search clustering engines, we describe an algorithm and a system for the display and the visual analysis of two graphs G 1 and G 2 such that each G i is defined on a different data set with its own primary relationships and there are secondary relationships between the vertices of G 1 and those of G 2. Our main goal is to compute a drawing of G 1 and G 2 that makes clearly visible the relations between the two graphs by avoiding their crossings, and that also takes into account some other important aesthetic requirements like number of bends, area, and aspect ratio. Application examples and experiments on the system performances are also presented.


Social Network Analysis Visual Complexity Matched Graph Matching Edge Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    GDToolkit: Graph drawing toolkit,
  2. 2.
    IEEE Symposium on Information Visualization (InfoVis 2007), October 28-30. IEEE Computer Society, Sacramento (2007)Google Scholar
  3. 3.
    Hong, S.-H., Nishizeki, T., Quan, W. (eds.): GD 2007. LNCS, vol. 4875. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  4. 4.
    IEEE VGTC Pacific Visualization Symposium 2008 (PacificVis 2008), Kyoto, Japan, March 4-7. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  5. 5.
    Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Baur, M., Brandes, U.: Multi-circular layout of micro/Macro graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 255–267. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. Theory and Appl. 36(2), 117–130 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Collins, C., Carpendale, M.S.T.: Vislink: Revealing relationships amongst visualizations. IEEE Trans. Vis. Comput. Graph. 13(6), 1192–1199 (2007)CrossRefGoogle Scholar
  9. 9.
    Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-upward drawings with vertices of prescribed size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  11. 11.
    Di Giacomo, E., Didimo, W., van Kreveld, M., Liotta, G., Speckmann, B.: Matched drawings of planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 183–194. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Di Giacomo, E., Didimo, W., Palladino, P., Liotta, G.: Visual analysis of one-to-many matched graphs. Tech. rep, RT-003-08, DIEI - Università di Perugia, Italy (2008)Google Scholar
  13. 13.
    Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths, and cycles. Intern. Journ. of Comput. Geom. and Appl. 17(2), 139–160 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.V.: Graphael: Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the grid. Theory Comput. Syst. 38(3), 313–327 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: Layout algorithms and visualization schemes. Journ. Graph Alg. and Appl. 9(1), 165–182 (2005)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion with embedding constraints. Journ. of Graph Alg. and Appl. 12(1), 73–95 (2008)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-completeness of a computer network layout problem. In: 20th IEEE Int. Symposium on Circuits and Systems, pp. 292–295 (1987)Google Scholar
  19. 19.
    Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Trans. Vis. Comput. Graph. 12(5), 733–740 (2006)CrossRefGoogle Scholar
  20. 20.
    Six, J.M., Tollis, I.G.: A framework and algorithms for circular drawings of graphs. Journ. of Discr. Alg. 4(1), 25–50 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Pietro Palladino
    • 1
  1. 1.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di PerugiaItaly

Personalised recommendations