Advertisement

Neural Network Representation for the Forces and Torque of the Eccentric Sphere Model

  • Mostafa Y. Elbakry
  • Mohammed El-Helly
  • Mahmoud Y. Elbakry
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5300)

Abstract

An artificial neural network (ANN) has been designed to simulate and predict the torque and force acting on the outer stationary sphere due to steady state motion of the second order fluid between two eccentric spheres by a rotating inner sphere with an angular velocity Ω The (ANN) model has been trained based on the experimental data to produce the torque and force at different eccentricities. The experimental and trained torque and force are compared .The designed ANN shows a good match to the experimental data.

Keywords

Neural Network Eccentric Sphere Eccentricity Torque Force 

References

  1. 1.
    Labonte, G.: Neural Network reconstruction of fluid flows from tracer-particle displacements. Exp. Fluid 30, 399–409 (2001)CrossRefGoogle Scholar
  2. 2.
    El Bakry, M.Y., El-Metwally, K.A.: Neural Network for Proton- Proton Collision at High Energy. Chaos, Solitons and Fractals 16(2), 279–285 (2003)CrossRefGoogle Scholar
  3. 3.
    El Bakry, M.Y.: Feed Forward Neural Networks Modeling for K-P Interactions. Chaos, Solitons and Fractals 16(2), 279–285 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Altun, H., Bilgil, A., Fidan, B.C.: Treatment of multi-dimensional data to enhance neural network estimators in regression problems. Expert Systems with Applications 32(2), 599–605 (2007)CrossRefGoogle Scholar
  5. 5.
    Sreenivasa Rao, K., Yegnanarayana, B.: Modeling durations of syllables using neural networks. Computer Speech and Language 21, 282–295 (2007)CrossRefGoogle Scholar
  6. 6.
    Abu-ElHasan, A., Abdel Wahab, M., El-Bakry, M., Hemaid, S., Zidan, M.: Flow of a viscoelastic fluid between two rotating confocal ellipsoids. Proc. Math. phys. soc. Egypt 81, 37–57 (2004)Google Scholar
  7. 7.
    Abdel Wahab, M., Giesekus, H., Zidan, M.: A new eccentric-cylinder rheometer. Rheol. Acta 29, 16 (1990)CrossRefGoogle Scholar
  8. 8.
    Wimmer, M.: Experiments on viscous flow between two rotating concentric spheres. J.of fluid mech. 78, 317 (1976)CrossRefGoogle Scholar
  9. 9.
    Yamajuchi, H., Fujiyoshi, J., Matsui, H.: Viscoelastic fluid in spherical Couette flow, Part I; Experimental study for the inner sphere rotation. J. Non-Newtonian Fluid Mech. 69, 29 (1997)CrossRefGoogle Scholar
  10. 10.
    Yamajuchi, H., Nishiguchi, B.: Spherical Couette flow of a viscoelastic fluid, Part III; A study of outer sphere rotation. J. Non-Newtonian Fluid Mech. 84, 45 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bird, R.B., Armstrong, R.C., Hassager, O., Curtiss, C.F.: Dynamics of polemeric liquids. fluid mechanics, kinetic theory, vol. I, II . Wiley, New York (1987)Google Scholar
  12. 12.
    Giesekus, H.W., Kroner, E., Kirchasner, K.: Trends in application of pure mathematics to mechanics. Lecture notes in physics, vol. 244, pp. 331–348. Springer, Berlin (1986)Google Scholar
  13. 13.
    Truesdell, C., Noll, W.: Encyclopedia of physics. The Non linear field theories of mechanics, vol. III/3. Springer, Heidelberg (1965)Google Scholar
  14. 14.
    Jeffery, G.B.: Proc. London Math. Soc. 14(2), 327 (1915)CrossRefGoogle Scholar
  15. 15.
    Stimson, M., Jeffery, G.B.: The motion of two spheres in a viscous fluid. Proc. Roy. Soc. A 3, 110–116 (1926)CrossRefzbMATHGoogle Scholar
  16. 16.
    Majumdar, S.R.: On the slow motion of viscous liquid in space between two eccentric spheres. J. Phy. Soc. Japan 26, 827–840 (1969)CrossRefGoogle Scholar
  17. 17.
    Munson, B.R.: Viscous incompressible flow between eccentric coaxially rotating spheres. The Phys. of Fluids 17, 528 (1974)CrossRefzbMATHGoogle Scholar
  18. 18.
    Menguturk, M., Munson, B.R.: Experimental results for low reynolds number flow between eccentric rotating spheres. The Phys. of Fluids 18, 128 (1975)CrossRefzbMATHGoogle Scholar
  19. 19.
    Abu-El Hasan, A., Abdel Wahab, M., El-Bakry, M., Zidan, M.: Flow of fluids of grade two between two eccentric rotating spheres. ZAMP 47, 313 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    El-Bakry, M.: Theoretical investigation as basis for a new rheometer which measure the Non linear mechanical properties of polymeric solutions or melts, Ph.D. thesis,Faculty of science, Benha, Egypt (1999)Google Scholar
  21. 21.
    Haykin, S.: Neural Networks: A comprehensive foundation. IEEE Press, Los Alamitos (1994)zbMATHGoogle Scholar
  22. 22.
    Chang, T.S., Abdel-gaffar, K.A.S.: IEEE Transactions Signal Processing 40(12), 3022 (1992)Google Scholar
  23. 23.
    Haweel, T.I.: Neural digital filters design and implementation using signal decomposition. In: Proceeding of the fourth International Conference on Signal Processing Applications and Technology, Santa Clara, California, September 28, pp. 337–342 (1993)Google Scholar
  24. 24.
    Lippmann, R.: IEEE Trans.Acoust. Speech and signal processing 38(6), 938 (1990)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hagan, M.T., Menhaj, M.B.: Training feed forward network with the Marquardt algorithm. IEEE Trans. on Neural Networks 5(6), 861–867 (1994)CrossRefGoogle Scholar
  26. 26.
    Hecht-Nielsen, R.: Neurocomputing. Addison Wesley Publishing Co., Reading (1990)Google Scholar
  27. 27.
    Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City (1991)Google Scholar
  28. 28.
    Boger, Z., Weber, R.: Finding an Optimal Artificial Neural Network Topology in Real-Life Modeling. In: Proceedings of the ICSC Symposium on Neural Computation, Article No. 1403/109 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mostafa Y. Elbakry
    • 1
  • Mohammed El-Helly
    • 2
  • Mahmoud Y. Elbakry
    • 2
  1. 1.Faculty of Education for girls, Tabuk, P.O.Box 796, KSASaudi Arabia
  2. 2.Faculty of science for girls, Dammam, KSASaudi Arabia

Personalised recommendations