The Average Solution of a Stochastic Nonlinear Schrodinger Equation under Stochastic Complex Non-homogeneity and Complex Initial Conditions

  • Magdy A. El-Tawil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5300)


In this paper, a stochastic nonlinear Schrodinger equation is studied under stochastic complex non-homogeneity in a limited time interval through homogeneous boundary conditions and complex initial conditions. The analytical solution for the linear case is introduced. The Wiener-Hermite expansion together with the perturbation method, the WHEP technique, is used to get approximate ensemble average of the stochastic solution process. Using Mathematica, the solution algorithm is tested through computing the first order approximation of the solution ensemble average. The method is illustrated through case studies which demonstrate the effects of the initial conditions as well as the input non-homogeneities.


Stochastic Nonlinear Schrodinger Equation Perturbation Eigenfunction Expansion WHEP Technique Wiener-Hermite Expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cazenave, T., Lions, P.: Orbital Stability of Standing Waves for Some Nonlinear Schrodinger Equations. Commun. Math. Phys. 85, 549–561 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Faris, W.G., Tsay, W.J.: Time Delay in Random Scattering. SIAM J. on Applied Mathematics 54(2), 443–455 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bruneau, C., Menza, L., Lehner, T.: Numerical Resolution of Some Nonlinear Schrodinger-like Equations in Plasmas. Numer. Meth. PDEs 15(6), 672–696 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abdullaev, F., Garnier, J.: Solitons in Media With Random Dispersive Perturbations. Physica (D) 134, 303–315 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Corney, J.F., Drummond, P.: Quantum Noise in Optical Fibres. II. Raman Jitter in Soliton Communications. J. Opt. Soc. Am. B 18(2), 153–161 (2001)CrossRefGoogle Scholar
  6. 6.
    Wang, M., et al.: Various Exact Solutions of Nonlinear Schrodinger Equation With Two Nonlinear Terms. Chaos, solitons and Fractals 31, 594–601 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Xu, L., Zhang, J.: Exact Solutions to Two Higher Order Nonlinear Schrodinger Equations. Chaos, solitons and Fractals 31, 937–942 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sweilam, N.: Variational Iteration Method for Solving Cubic Nonlinear Schrodinger Equation. J. of computational and applied mathematics (to appear)Google Scholar
  9. 9.
    Zhu, S.: Exact Solutions for The High Order Dispersive Cubic Quintic Nonlinear Schrodinger Equation by The Extended Hyperbolic Auxiliary Equation Method. Chaos, solitons and Fractals (to appear)Google Scholar
  10. 10.
    Sun, J., et al.: New Conservation Schemes for The Nonlinear Schrodinger Equation. Applied Mathematics and Computation 177, 446–451 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Parsezian, K., Kalithasan, B.: Cnoidal and Solitary Wave Solutions of The Coupled Higher Order Nonlinear Schrodinger Equations in Nonlinear Optics. Chaos, solitons and Fractals 31, 188–196 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sakaguchi, H., Higashiuchi, T.: Two Dimensional Dark Soliton in The Nonlinear Schrodinger Equation. Physics letters A (to appear)Google Scholar
  13. 13.
    Huang, D., et al.: Explicit and Exact Traveling Wave Solution for The Generalized Derivative Schrodinger Equation. Chaos, solitons and Fractals 31, 586–593 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Moebs, G.: A Multilevel Method for The Resolution of a Stochastic Weakly Damped Nonlinear Schrodinger Equation. Applied Numerical Mathematics 26, 353–375 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Garnier, J., Abdullaev, F.: Modulational Instability Induced by Randomly Varying Coefficients for The Nonlinear Schrodinger Equation. Physica D 145, 65–83 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Adrian, A., et al.: Averaged Exact Dynamics of a Stochastic Non-Markovian Wave Vector. Physica A 292, 383–391 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Abdullaev, F., et al.: Optical Pulse Propagation in Fibers With Random Dispersion. Physica D 192, 83–94 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gautier, E.: Uniform Large Deviations for The Nonlinear Schrodinger Equation With Multiplicative Noise. Stochastic Processes and Their Applications 115, 1904–1927 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gawad, E., El-Tawil, M.: General Stochastic Oscillatory Systems. Applied Mathematical Modeling 17(6), 329–335 (1993)CrossRefzbMATHGoogle Scholar
  20. 20.
    El-Tawil, M., Mahmoud, G.: The Solvability of Parametrically Forced Oscillators Using WHEP Technique. Mechanics and Mechanical Engineering 3(2), 181–188 (1999)Google Scholar
  21. 21.
    El-Tawil, M.: The Application of WHEP Technique on Stochastic Partial Differential Equations. Int. J. of differential equations and applications 7(3), 325–337 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Xu, Y., et al.: On a Complex Duffing System With Random Excitation. Chaos, Solitons and Fractals, expected (2007)Google Scholar
  23. 23.
    El-Tawil, M.A.: The Homotopy Wiener-Hermite Expansion and Perturbation Technique (WHEP). In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science I. LNCS, vol. 4750, pp. 159–180. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Farlow, S.: P.D.E. for Scientists and Engineers. John Wiley & sons, N.Y. (1982)zbMATHGoogle Scholar
  25. 25.
    Pipes, L., Harvill, L.: Applied Mathematics for Engineers and Physicists. McGraw-Hill, Tokyo (1970)Google Scholar
  26. 26.
    El-Tawil, M., Al-Johani, A.: On The Solution of Stochastic Oscillatory Quadratic Nonlinear Equations Using Different Techniques, A Comparison Study. TMNA, J. of Juliusz Schauder Center (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Magdy A. El-Tawil
    • 1
  1. 1.Faculty of Engineering, Engineering Mathematics DepartmentCairo UniversityGizaEgypt

Personalised recommendations