Advertisement

Efficient Reversible Logic Design of BCD Subtractors

  • Himanshu Thapliyal
  • Hamid R. Arabnia
  • M. B. Srinivas
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5300)

Abstract

Reversible logic is emerging as a promising computing paradigm, having its applications in low-power CMOS, quantum computing, nanotech-nology and optical computing. Firstly, we showed a modified design of conventional BCD subtractors and also proposed designs of carry look-ahead and carry skip BCD subtractors. The proposed designs of carry look-ahead and carry skip BCD subtractors are based on the novel designs of carry look-ahead and carry skip BCD adders, respectively. Then, we introduced the reversible logic implementation of the modified conventional, as well as the proposed, carry look-ahead and carry skip BCD subtractors efficient in terms of the number of reversible gates used and garbage output produced. To the best of our knowledge, the carry look-ahead and carry skip BCD subtractors and their reversible logic design are explored for the first time ever in literature.

Keywords

Reversible logic BCD subtractors BCD adders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cowlishaw, M.F.: Decimal Floating-Point: Algorithm for Computers. In: Proc. 16th IEEE Symposium on Computer Arithmetic, pp. 104–111 (2003)Google Scholar
  2. 2.
    Landauer, R.: Irreversibility and Heat Generation in the Computational Process. IBM Journal of Research and Development 5, 183–191 (1961)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical Reversibility of Computation. IBM J. Research and Development, 525–532 (1973)Google Scholar
  4. 4.
    Perkowski, M., et al.: Regular Realization of Symmetric Functions using Reversible Logic. In: Proc. Euro-Micro., pp. 245–252 (2001)Google Scholar
  5. 5.
    Maslov, D.: Reversible Logic Synthesis. PhD. Thesis, University of New Brunswick, Canada (2003)Google Scholar
  6. 6.
    Gupta, P., Agarwal, A., Jha, N.K.: An Algorithm for Synthesis of Reversible Logic Circuits. IEEE Trans. Computer-Aided Design 25(11), 2317–2330 (2006)CrossRefGoogle Scholar
  7. 7.
    Patel, K., Markov, I., Hayes, J.: Optimal Synthesis of Linear Reversible Circuits. Quantum Information and Computation 8(3-4), 282–294 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Jain, R.P.: Modern Digital Electronics, pp. 206–207. Tata McGraw Hill, New York (2003)Google Scholar
  9. 9.
    Schmookler, M.S., Weinberger, A.W.: High Speed Decimal Addition. IEEE Trans. Computers C-20, 862–867 (1971)CrossRefzbMATHGoogle Scholar
  10. 10.
    Erle, M.A., Schulte, M.J.: Decimal Multiplication Via Carry-Save Addition. In: Proc. of the Application-Specific Systems, Architectures, and Processors (ASAP 2003), pp. 348–359 (2003)Google Scholar
  11. 11.
    Pai, Y.T., Chen, Y.K.: The Fastest Carry Look ahead Adder. In: Proc. of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA 2004), pp. 434–436 (2004)Google Scholar
  12. 12.
    Fredkin, E., Toffoli, T.: Conservative Logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Toffoli, T.: Reversible Computing. Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980)Google Scholar
  14. 14.
    Khan, M.M.H.A.: Design of Full adder with Reversible Gates. In: Proc. of International Conf. on Computer and Information Technology, pp. 515–519 (2002)Google Scholar
  15. 15.
    Peres, A.: Reversible Logic and Quantum Computers. Physical Review A 32, 3266–3276 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Thapliyal, H., Srinivas, M.B.: A Novel Reversible TSG Gate and Its Application for Designing Reversible Carry Look Ahead Adder and Other Adder Architectures. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS, vol. 3740, pp. 805–817. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Thapliyal, H., Srinivas, M.B.: Novel Design and Reversible Logic Synthesis of Multiplexer Based Full Adder and Multipliers. In: Proc. 48th IEEE MIDWEST Symposium on Circuits and Systems (MWSCAS 2005), pp. 1593–1596 (2005)Google Scholar
  18. 18.
    Babu, H.M.H., Chowdhury, A.R.: Design of a compact reversible binary coded decimal adder circuit. Journal of Systems Architecture 52(5), 257–314 (2006)CrossRefGoogle Scholar
  19. 19.
    Thapliyal, H., Vinod, A.P.: Design of reversible sequential elements with feasibility of transistor implementation. In: Proc. ISCAS 2007, pp. 625–628 (2007)Google Scholar
  20. 20.
  21. 21.
    Desoete, B., De Vos, A.: A reversible carry-look-ahead adder using control gates. Integration: the V.L.S.I. Journal 33, 89–104 (2002)zbMATHGoogle Scholar
  22. 22.
    Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Journal of Unconventional Computing 1, 339–355 (2005)Google Scholar
  23. 23.
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Himanshu Thapliyal
    • 1
  • Hamid R. Arabnia
    • 2
  • M. B. Srinivas
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity of South FloridaUSA
  2. 2.Department of Computer ScienceUniversity of GeorgiaUSA
  3. 3.Centre for VLSI Design and Embedded SystemsIIIT HyderabadIndia

Personalised recommendations