Advertisement

Parallel Optimal Weighted Links

  • Ovidiu Daescu
  • Yam K. Cheung
  • James D. Palmer
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5300)

Abstract

In this paper we consider parallel algorithms for computing an optimal link among weighted regions in the plane. The problem arises in several areas, including radiation therapy, geological exploration and environmental engineering. We present a CREW PRAM parallel algorithm and a coarse-grain parallel computer algorithm for this problem. For a weighted subdivision with n vertices, the work of the parallel algorithms we propose is only an O(logn) factor more than that of their optimal sequential counterparts. We further adapt an algorithm for minimizing sum of linear fractionals, that has inherent parallelism, to solve in parallel the global optimization problems associated with our solution for the weighted region optimal link problem.

Keywords

Line Segment Short Path Problem Steiner Point Feasible Domain Polyhedral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm for weighted shortest paths on polyhedral surfaces. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 11–22. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. Journal of the ACM 52(1), 25–53 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric shortest path problems. In: Proceedings of the 32nd annual ACM Symposium on Theory of Computing, pp. 286–295 (2000)Google Scholar
  4. 4.
    Alsuwaiyel, M.H., Lee, D.T.: Minimal Visibility Paths Inside a Simple Polygon. Computational Geometry: Theory and Applications 3, 1–25 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alsuwaiyel, M.H., Lee, D.T.: Finding an Approximate Minimum-Link Visibility Paths Inside a Simple Polygon. Information processing letters 55, 75–79 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Asano, T., Guibas, L.J., Tokuyama, T.: Walking in an arrangement topologically. Int. Journal of Computational Geometry and Applications 4, 123–151 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brahme, A.: Optimization of radiation therapy. Int. Jouurnal of Radiat. Oncol. Biol. Phys. 28, 785–787 (1994)CrossRefGoogle Scholar
  8. 8.
    Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. Journal of the ACM 39, 1–54 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, D.Z., Daescu, O., Hu, X., Wu, X., Xu, J.: Determining an optimal penetration among weighted regions in two and three dimensions. Journal of Combinatorial Optimization 5(1), 59–79 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, D.Z., Daescu, O., Dai, Y., Katoh, N., Wu, X., Xu, J.: Optimizing the sum of linear fractional functions and applications. Journal of Combinatorial Optimization 9(1), 69–90 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, D.Z., Hu, X., Xu, J.: Optimal Beam Penetration in Two and Three Dimensions. Journal of Combinatorial Optimization 7(2), 111–136 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, D.Z., Luan, S., Xu, J.: Topological Peeling and Applications. Int. J. Comput. Geometry Appl. 13(2), 135–172 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cheng, S.-W., Na, H.-S., Vigneron, A., Wang, Y.: Approximate Shortest Paths in Anisotropic Regions. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 766–774 (2007)Google Scholar
  14. 14.
    Cole, R., Salowe, J., Steiger, W., Szemeredi, E.: Optimal Slope Selection. SIAM Journal of Computing 18, 792–810 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Daescu, O.: Parallel Optimal Weighted Links. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 649–657. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Daescu, O., Palmer, J.D.: Minimum Separation in Weighted Subdivisions (manuscript, 2003)Google Scholar
  17. 17.
    Daescu, O., Mitchell, J.S.B., Ntafos, S., Palmer, J.D., Yap, C.K.: k-Link Shortest Paths in Weighted Subdivisions. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 325–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Daescu, O., Mitchell, J.S.B., Ntafos, S., Palmer, J.D., Yap, C.K.: An Experimental Study of Weighted k-Link Shortest Path Algorithms. In: Proceedings of the 7th International Workshop on the Algorithmic Foundations of Robotics (2006)Google Scholar
  19. 19.
    Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal of Computer and System Sciences 38, 165–194 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Falk, J.E., Palocsay, S.W.: Optimizing the Sum of Linear Fractional Functions. In: Floudas, C.A., Pardalos, P.M. (eds.) Collection: Recent Advances in Global Optimization, pp. 221–258 (1992)Google Scholar
  21. 21.
    Goodrich, M.: Intersecting Line Segments in Parallel with an Output-Sensitive Number of Processors. SIAM Journal on Computing 20, 737–755 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Goodrich, M., Ghouse, M.R., Bright, J.: Sweep methods for Parallel Computational Geometry. Algorithmica 15, 126–153 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. Algorithmica 30(4), 527–562 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Maheshwari, A., Sack, J.R., Djidjev, H.: Link Distance Problems. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Comput. Geom., pp. 519–558. Elsevier Science, Amsterdam (2000)CrossRefGoogle Scholar
  25. 25.
    Mata, C., Mitchell, J.S.B.: A new algorithm for computing shortest paths in weighted planar subdivisions. In: Proc. ACM Symp. Comput. Geom., pp. 264–273 (1997)Google Scholar
  26. 26.
    Mitchell, J.S.B.: Geometric Shortest Paths and Network Optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Comput. Geom. Elsevier Science, Amsterdam (2000)Google Scholar
  27. 27.
    Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: Finding shortest paths through a weighted planar subdivision. J. of the ACM 38, 18–73 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mitchell, J.S.B., Piatko, C., Arkin, E.M.: Computing a shortest k-link path in a polygon. In: Proc. 33rd Annual IEEE Sympos. Found. Comput. Sci., pp. 573–582 (1992)Google Scholar
  29. 29.
    Piatko, C.: Geometric bicriteria optimal path problems. PhD thesis, Cornell U (1993)Google Scholar
  30. 30.
    Reif, J.H., Sun, Z.: An efficient approximation algorithm for weighted-region shortest-path problem. In: Proc. of 4th Workshop on Algorithmic Found. of Robot., pp. 191–203 (2000)Google Scholar
  31. 31.
    Sun, Z., Reif, J.H.: On finding approximate optimal paths in weighted regions. J. Algorithms 58(1), 1–32 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ovidiu Daescu
    • 1
  • Yam K. Cheung
    • 1
  • James D. Palmer
    • 2
  1. 1.Department of Computer ScienceUniversity of Texas at Dallas RichardsonUSA
  2. 2.Department of Computer ScienceNorthern Arizona University FlagstaffUSA

Personalised recommendations