Advertisement

The Voronoi Diagram of Circles and Its Application to the Visualization of the Growth of Particles

  • François Anton
  • Darka Mioc
  • Christopher Gold
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5300)

Abstract

Circles are frequently used for modelling the growth of particle aggregates through the Johnson-Mehl tessellation, that is a special instance of the Voronoi diagram of circles. Voronoi diagrams allow one to answer proximity queries after locating a query point in the Voronoi zone it belongs to. The dual graph of the Voronoi diagram is called the Delaunay graph. In this paper, we first show a necessary and sufficient condition of connectivity of the Voronoi diagram of circles. Then, we show how the Delaunay graph of circles (the dual graph of the Voronoi diagram of circles) can be computed exactly, and in a much simpler way, by computing the eigenvalues of a two by two matrix. Finally, we present how the Voronoi diagram of circles can be used to model the growth of particle aggregates. We use the Poisson point process in the Voronoi diagram of circles to generate the Johnson-Mehl tesselation. The Johnson-Mehl model is a Poisson Voronoi growth model, in which nuclei are generated asynchronously using a Poisson point process, and grow at the same radial speed. Growth models produce spatial patterns as a result of simple growth processes and their visualization is important in many technical processes.

Keywords

Voronoi diagram of circles Visualization of nucleation and growth of particles Johnson-Mehl tessellations growth models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB86]
    Ash, P.F., Bolker, F.D.: Generalized Dirichlet Tessellations. Geometria Dedicata 20, 209–243 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [ABMY02]
    Anton, F., Boissonnat, J.-D., Mioc, D., Yvinec, M.: An exact predicate for the optimal construction of the Additively Weighted Voronoi diagram. In: Proceedings of the European Workshop on Computational Geometry 2002, Warsaw, Poland (2002)Google Scholar
  3. [AK00]
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Handbook of computational geometry, pp. 201–290. North-Holland, Amsterdam (2000)CrossRefGoogle Scholar
  4. [AKM02]
    Anton, F., Kirkpatrick, D., Mioc, D.: An exact algebraic predicate for the maintenance of the topology of the additively weighted voronoi diagram. In: The Fourteenth Canadian Conference on Computational Geometry, Lethbridge, Alberta, Canada, pp. 72–76 (2002)Google Scholar
  5. [AM95]
    Anishchik, S.V., Medvedev, N.N.: Three-dimensional Apollonian packing as a model for dense granular systems ll. Phys. Rev. Lett. 75(23), 4314–4317 (1995)CrossRefGoogle Scholar
  6. [AMG98a]
    Anton, F., Mioc, D., Gold, C.M.: Dynamic Additively Weighted Voronoi Diagrams Made Easy. In: Proceedings of the 10th Canadian Conference on Computational Geometry (CCCG 1998), Montréal, Canada (1998)Google Scholar
  7. [AMG98b]
    Anton, F., Mioc, D., Gold, C.M.: An algorithm for the dynamic construction and maintenance of Additively Weighted Voronoi diagrams. In: Proceedings of the 14th European Workshop on Computational Geometry (CG 1998), Barcelona, Spain, pp. 117–119 (1998)Google Scholar
  8. [Anton04]
    Anton, F.: Voronoi diagrams of semi-algebraic sets, Ph.D. thesis, The University of British Columbia, Vancouver, British Columbia, Canada (2004)Google Scholar
  9. [Auren87]
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Auren88]
    Aurenhammer, F.: Voronoi diagrams - A survey, Institute for Information Processing, Technical University of Graz, Report 263 (1988)Google Scholar
  11. [BB96]
    Beachy, J.A., Blair, W.D.: Abstract Algebra. Waveland Press Inc. (1996)Google Scholar
  12. [BCSS98]
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998) (with a foreword by R.M. Karp)CrossRefzbMATHGoogle Scholar
  13. [Berge79]
    Berger, M.: Géométrie. espaces euclidiens, triangles, cercles et sphères, CEDIC/FERNAND NATHAN, Paris, vol. 2 (1979)Google Scholar
  14. [Boots73]
    Boots, B.N.: Some models of random subdivision of space. Geografiska Annaler 55B, 34–48 (1973)CrossRefGoogle Scholar
  15. [CLO98]
    Cox, D., Little, J., O’Shea, D.: Using algebraic geometry. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  16. [CPX02]
    Chen, Z., Papadopoulou, E., Xu, J.: Robust algorithm for k-gon voronoi diagram construction. In: Abstracts for the Fourteenth Canadian Conference on Computational Geometry CCCG 2002, Lethbridge, Alberta, Canada, August 2002, pp. 77–81. University of Lethbridge (2002)Google Scholar
  17. [Des03]
    Deschamps, A.: Analytical Techniques for Aluminium Alloys. In: Handbook of Aluminum. Alloy Production and Materials manufacturing, vol. 2, pp. 155–192. Marcel Dekker, Inc., New York (2003)Google Scholar
  18. [DMT90]
    Devillers, O., Meiser, S., Teillaud, M.: Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time per Operation, Rapport INRIA 1349, INRIA, BP93, 06902 Sophia-Antipolis cedex, France (1990)Google Scholar
  19. [EK06]
    Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: algorithmic analysis and implementation. Comput. Geom. 33(1-2), 18–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [GP02]
    Greuel, G.-M., Pfister, G.: A Singular introduction to commutative algebra. In: Bachmann, O., Lossen, C., Schönemann, H. (eds.), With 1 CD-ROM (Windows, Macintosh, and UNIX). Springer, Berlin (2002)Google Scholar
  21. [GS]
    Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
  22. [GS85]
    Guibas, L., Stolfi, J.: Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams. ACM Transactions on Graphics 4(2), 74–123 (1985)CrossRefzbMATHGoogle Scholar
  23. [Horal79]
    Horalek, V.: The Johnson-Mehl tessellation with time dependent nucleation intensity in view of basic 3-D tessellations. Mathematical research 51, 111–116 (1979)zbMATHGoogle Scholar
  24. [JM39]
    Johnson, W.A., Mehl, F.R.: Reaction kinetics in processes of nucleation and growth. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 135, 416–456 (1939)Google Scholar
  25. [KE02]
    Karavelas, M.I., Emiris, I.Z.: Predicates for the Planar Additively Weighted Voronoi Diagram. ECG Technical Report ECG-TR-122201-01, INRIA (2002)Google Scholar
  26. [KE03]
    Karavelas, M.I., Emiris, I.Z.: Root comparison techniques applied to computing the additively weighted Voronoi diagram. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 320–329. ACM, New York (2003)Google Scholar
  27. [KKS00]
    Kim, D.-S., Kim, D.-U., Sugihara, K.: Voronoi diagram of a circle set constructed from Voronoi diagram of a point set. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 432–443. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. [KKS01a]
    Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set. I. Topology. Comput. Aided Geom. Design 18(6), 541–562 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. [KKS01b]
    Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set. II. Geometry. Comput. Aided Geom. Design 18(6), 563–585 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Kle89]
    Klein, R.: Concrete and abstract Voronoï diagrams. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  31. [Kol37]
    Kolmogorov, A.N.: A statistical theory for the recrystallization of metals. Akad. nauk SSSR, Izv., Ser. Matem. 1(3), 355–359 (1937)Google Scholar
  32. [Lan02]
    Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  33. [Med00]
    Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB Russian Academy of Science, Novosibirsk (2000)Google Scholar
  34. [OBSC01]
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  35. [Stoya98]
    Stoyan, D.: Random sets: Models and Statistics. International Statistical Review 66, 1–27 (1998)CrossRefzbMATHGoogle Scholar
  36. [Vor07]
    Voronoï, G.F.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik 133, 97–178 (1907)zbMATHGoogle Scholar
  37. [Vor08]
    Voronoï, G.F.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. première partie. partition uniforme de l’espace analytique à n dimensions à l’aide des translations d’un même polyèdre convexe. Journal für die reine und angewandte Mathematik 134, 198–287 (1908)MathSciNetGoogle Scholar
  38. [Vor10]
    Voronoï, G.F.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. seconde partie. domaines de formes quadratiques correspondant aux différents types de paralléloèdres primitifs. Journal für die reine und angewandte Mathematik 136, 67–181 (1910)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François Anton
    • 1
  • Darka Mioc
    • 2
  • Christopher Gold
    • 3
  1. 1.Department of Informatics and Mathematical ModellingTechnical University of Denmark, Richard Petersens PladsKongens LyngbyDenmark
  2. 2.Department of Geodesy and Geomatics EngineeringUniversity of New BrunswickFrederictonCanada
  3. 3.School of ComputingUniversity of GlamorganPontypriddUK

Personalised recommendations