Skip to main content

Harmony Search Algorithms for Water and Environmental Systems

  • Chapter
Music-Inspired Harmony Search Algorithm

Part of the book series: Studies in Computational Intelligence ((SCI,volume 191))

Abstract

Recently, the harmony search (HS) algorithm and other phenomenon-inspired algorithms have gained attention for their abilities to solve large-scale, difficult combinatorial optimization problems. This chapter reviews the applications of the HS method in the areas of water resources and environmental system optimization. Four specific optimization problems are considered: design of water distribution networks, scheduling of multi-location dams, parameter calibration of environmental models, and determination of ecological reserve location. The computational performance of the HS method on solving these four optimization problems will be compared against other optimization methods. It will be shown in this chapter that the HS method can outperform other methods in terms of solution quality and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BBC News, Sanitation ’best medical advance’ (2007) (accessed October 20, 2008), http://news.bbc.co.uk/2/hi/health/6275001.stm

  2. Rosing, K.E., ReVelle, C.S., Williams, J.C.: Maximizing species representation under limited resources: a new and efficient heuristic. Environmental Modeling and Assessment 7, 91–98 (2002)

    Article  Google Scholar 

  3. Cesario, L.: Modeling, analysis, & design of water distribution systems. American Water Works Association, Denver (1995)

    Google Scholar 

  4. Geem, Z.W., Tseng, C.L., Kim, J., et al.: Trenchless water pipe condition assessment using artificial neural network. In: Najafi, M., Osborn, L. (eds.) Pipelines 2007: advances and experiences with trenchless pipeline projects. ASCE, Reston (2007)

    Google Scholar 

  5. Choi, W.S.: Water supply and sewerage. ChungMunGak, Seoul (1999)

    Google Scholar 

  6. Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Engineering Optimization 38, 259–280 (2006)

    Article  Google Scholar 

  7. Rossman, L.A.: EPANET2 users manual. US Environmental Protection Agency, Cincinnati (2000)

    Google Scholar 

  8. Alperovits, E., Shamir, U.: Design of optimal water distribution systems. Water Resources Research 13, 885–900 (1977)

    Article  Google Scholar 

  9. Wu, Z.Y., Boulos, P.F., Orr, C.H., et al.: Using genetic algorithms to rehabilitate distribution systems. Journal of the American Water Works Association 93, 74–85 (2001)

    Google Scholar 

  10. Cunha, M.C., Sousa, J.: Water distribution network design optimization: simulated annealing approach. ASCE Journal of Water Resources Planning and Management 125, 215–221 (1999)

    Article  Google Scholar 

  11. Eusuff, M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. ASCE Journal of Water Resources Planning and Management 129, 210–225 (2003)

    Article  Google Scholar 

  12. Perelman, L., Ostfeld, A.: An adaptive heuristic cross-entropy algorithm for optimal design of water distribution systems. Engineering Optimization 39, 413–428 (2007)

    Article  Google Scholar 

  13. Lin, M.D., Liu, Y.H., Liu, G.F., et al.: Scatter search heuristic for least-cost design of water distribution networks. Engineering Optimization 39, 857–876 (2007)

    Article  MathSciNet  Google Scholar 

  14. Geem, Z.W.: Particle-swarm harmony search for water network design. Engineering Optimization (in press)

    Google Scholar 

  15. Fujiwara, O., Kang, D.B.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resources Research 26, 539–549 (1990)

    Article  Google Scholar 

  16. Reca, J., Martinez, J., Gil, C., et al.: Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Journal Water Resources Management 22, 1367–1379 (2008)

    Article  Google Scholar 

  17. Zecchin, A.C., Simpson, A.R., Maier, H.R., et al.: Application of two ant colony optimization algorithms to water distribution system optimization. Mathematical and Computer Modelling 44, 451–468 (2006)

    Article  MATH  Google Scholar 

  18. Cunha, M.C., Ribeiro, L.: Tabu search algorithms for water network optimization. European Journal of Operational Research 157, 746–758 (2004)

    Article  MATH  Google Scholar 

  19. Reca, J., Martinez, J.: Genetic algorithms for the design of looped irrigation water distribution networks. Water Resources Research 42 (2006)

    Google Scholar 

  20. Schaake, J., Lai, D.: Linear programming and dynamic programming – application of water distribution network design (Report 116). MIT Press, Cambridge (1969)

    Google Scholar 

  21. Broad, D.R., Dandy, G.C., Maier, H.R.: Water distribution system optimization using metamodels. ASCE Journal of Water Resources Planning and Management 131, 172–180 (2005)

    Article  Google Scholar 

  22. Maier, H.R., Simpson, A.R., Zecchin, A.C., et al.: Ant colony optimization for design of water distribution systems. ASCE Journal of Water Resources Planning and Management 129, 200–209 (2003)

    Article  Google Scholar 

  23. Geem, Z.W.: Harmony search optimisation to the pump-included water distribution network design. Civil Engineering and Environmental Systems (2008), doi:10.1080/10286600801919813

    Google Scholar 

  24. Geem, Z.W., Park, Y.: Harmony search for layout of rectilinear branched networks. WSEAS Transactions on Systems 6, 1349–1354 (2006)

    Google Scholar 

  25. Geem, Z.W.: Geometry layout for real-world tree networks using harmony search. In: Proceedings of the 3rd Indian International Conference on Artificial Intelligence (IICAI 2007), pp. 268–277 (2007)

    Google Scholar 

  26. Walters, G., Lohbeck, T.: Optimal layout of tree networks using genetic algorithms. Engineering Optimization 22, 27–48 (1993)

    Article  Google Scholar 

  27. Walters, G., Smith, D.: Evolutionary design algorithm for optimal layout of tree networks. Engineering Optimization 24, 261–281 (1995)

    Article  Google Scholar 

  28. Afshar, M.H., Marino, M.A.: Application of ant algorithm for layout optimization of tree networks. Engineering Optimization 38, 353–369 (2006)

    Article  Google Scholar 

  29. Wikipedia, Dam (2002) (accessed October 23, 2008), http://en.wikipedia.org/wiki/Dam

  30. Heidari, M., Chow, V.T., Kokotovic, P.V., et al.: Discrete differential dynamic programming approach to water resources systems optimization. Water Resources Research 7, 273–282 (1971)

    Article  Google Scholar 

  31. Wardlaw, R., Sharif, M.: Evaluation of genetic algorithms for optimal reservoir system operation. ASCE Journal of Water Resources Planning and Management 125, 25–33 (1999)

    Article  Google Scholar 

  32. Teegavarapu, R.S.V., Simonovic, S.P.: Optimal operation of reservoir systems using simulated annealing. Water Resources Management 16, 401–428 (2002)

    Article  Google Scholar 

  33. Geem, Z.W.: Optimal scheduling of multiple dam system using harmony search algorithm. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 316–323. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Larson, R.E.: State increment dynamic programming. American Elsevier, New York (1968)

    MATH  Google Scholar 

  35. Wikipedia, Flood (2002) (accessed October 23,2008), http://en.wikipedia.org/wiki/Flood

  36. McCarthy, G.T.: The unit hydrograph and flood routing. In: Proceedings of Conference of the North Atlantic Division. U.S. Army Corps of Engineers, New London (1938)

    Google Scholar 

  37. Gill, M.A.: Flood routing by the Muskingum method. Journal of Hydrology 36, 353–363 (1978)

    Article  Google Scholar 

  38. Tung, Y.K.: River flood routing by nonlinear Muskingum method. ASCE Journal of Hydraulic Engineering 111, 1447–1460 (1985)

    Article  Google Scholar 

  39. Yoon, J., Padmanabhan, G.: Parameter estimation of linear and nonlinear Muskingum models. ASCE Journal of Water Resources Planning and Management 119, 600–610 (1993)

    Article  Google Scholar 

  40. Mohan, S.: Parameter estimation of nonlinear Muskingum models using genetic algorithm. ASCE Journal of Hydraulic Engineering 123, 137–142 (1997)

    Article  Google Scholar 

  41. Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association 37, 1131–1138 (2001)

    Article  Google Scholar 

  42. Das, A.: Parameter estimation for Muskingum models. ASCE Journal of Irrigation and Drainage Engineering 130, 140–147 (2004)

    Article  Google Scholar 

  43. Geem, Z.W.: Parameter estimation for the nonlinear Muskingum model using BFGS technique. ASCE Journal of Irrigation and Drainage Engineering 132, 474–478 (2006)

    Article  Google Scholar 

  44. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  45. Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., et al.: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering 197, 3080–3091 (2008)

    Article  Google Scholar 

  46. Geem, Z.W., Williams, J.C.: Harmony search and ecological optimization. International Journal of Energy and Environment 1, 150–154 (2007)

    Google Scholar 

  47. ReVelle, C., Williams, J.C., Boland, J.J.: Counterpart models in facility location science and reserve selection science. Environmental Modelling and Assessment 7, 71–80 (2002)

    Article  Google Scholar 

  48. Masters, L., Clupper, N., Gaines, E., et al.: Biodiversity Research Consortium Species Database Manual, The Nature Conservancy, Boston (1995)

    Google Scholar 

  49. Csuti, B.S., Polasky, P.H., Williams, R.L., et al.: A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation 80, 83–97 (1997)

    Article  Google Scholar 

  50. Rosing, K.E., ReVelle, C.S., Williams, J.C.: Maximizing species representation under limited resources: a new and efficient heuristic. Environmental Modeling and Assessment 7, 91–98 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geem, Z.W., Tseng, CL., Williams, J.C. (2009). Harmony Search Algorithms for Water and Environmental Systems. In: Geem, Z.W. (eds) Music-Inspired Harmony Search Algorithm. Studies in Computational Intelligence, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00185-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00185-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00184-0

  • Online ISBN: 978-3-642-00185-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics