Skip to main content

Harmony Search Applications in Mechanical, Chemical and Electrical Engineering

  • Chapter
Music-Inspired Harmony Search Algorithm

Part of the book series: Studies in Computational Intelligence ((SCI,volume 191))

Abstract

The primary aim of this chapter is to introduce the state of the art applications of the harmony search (HS) algorithm in mechanical, chemical and electrical engineering fields. The HS algorithm has been broadly utilized in complex optimization problems arising in most engineering applications. It has been reported to be a viable alternative to other conventional optimization techniques in these engineering disciplines. This chapter is intended to discuss the available literature in the field and to provide general information for those who are interested in optimized-design of thermal systems, economic utilization of electric power-systems and optimization of machining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wikipedia, Shell and tube heat exchanger (2005) (accessed October 25, 2008), http://en.wikipedia.org/wiki/Shell_and_tube_heat_exchanger

  2. Özçelik, Y.: Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Appl. Therm. Eng. 27, 1849–1856 (2007)

    Article  Google Scholar 

  3. Sun, S.-y., Lu, Y.-d., Yan, C.-q.: Optimization in calculation of shell-tube heat exchanger. Int. Comm. Heat Mass Transfer 20, 675–685 (1993)

    Article  Google Scholar 

  4. Lerou, P.P.P.M., Veenstra, T.T., Burger, et al.: Optimization of counterflow heat exchanger geometry through minimization of entropy generation. Cryogenics 45, 659–669 (2005)

    Google Scholar 

  5. Taborek, J.: Shell and tube heat exchangers: single phase flow, Heat Exchanger Design Handbook. Hemisphere, New York (1982)

    Google Scholar 

  6. Saunders, E.A.D.: Heat exchangers – selection, design, construction. Longman scientific and technical, New York (1988)

    Google Scholar 

  7. Hewitt, G.F., Shires, G.L., Bott, T.R.: Process heat transfer. CRC Press, Boca Raton (1994)

    Google Scholar 

  8. Fesanghary, M., Damangir, E., Soleimani, I.: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl Therm. Eng. (2008), doi:10.1016/j.applthermaleng.2008.05.018

    Google Scholar 

  9. Perry, R.J., Chilton, C.H.: Chemical Engineers Handbook. McGraw-Hill, New York (1973)

    Google Scholar 

  10. Reppich, M., Kohoutek, J.: Optimal design of shell-and-tube heat exchangers. Computers Chem. Engng. 18, 295–299 (1994)

    Article  Google Scholar 

  11. Zalewski, W., Niezgoda-Zelasko, B., Litwin, M.: Optimization of evaporative fluid coolers. International Journal of Refrigeration 23, 553–565 (2000)

    Article  Google Scholar 

  12. Gonzalez, M.T., Petrcci, N.C., Urbicain, M.J.: Air-cooled heat exchanger design using successive quadratic programming (SQP). Heat Transfer Engineering 22, 11–16 (2001)

    Article  Google Scholar 

  13. Saffar-Avval, M., Damangir, E.: A general correlation for determining optimum baffle spacing for all types of shell and tube exchangers. Int. J. Heat Mass Transfer 38, 2501–2506 (1995)

    Article  Google Scholar 

  14. Soltan, B.K., Saffar-Avval, M., Damangir, E.: Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing. Appl. Thermal Eng. 24, 2801–2810 (2004)

    Article  Google Scholar 

  15. Fesanghary, M., Mahdavi, M., Minary, M., Alizadeh, Y.: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput. Methods Appl. Mech. Engrg. 197, 3080–3091 (2008)

    Article  Google Scholar 

  16. Chaudhuri, P.D., Diwekar, U.M., Logsdon, J.S.: An automated approach for the optimal design of heat exchangers. Ind. Eng. Chem. Res. 36, 3685–3693 (1997)

    Article  Google Scholar 

  17. Selbaş, R., Kızılkan, Ö., Reppich, M.: A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chemical Engineering and Processing 45, 268–275 (2006)

    Article  Google Scholar 

  18. Ozkol, I., Komurgoz, G.: Determination of the optimum geometry of the heat exchanger body via a genetic algorithm. Numerical Heat Transfer, Part A 48, 283–296 (2005)

    Article  Google Scholar 

  19. Gholap, A.K., Khan, J.A.: Design and multi-objective optimization of heat exchangers for refrigerators. Applied Energy 84, 1226–1239 (2007)

    Article  Google Scholar 

  20. Allen, B., Gosselin, L.: Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers. Int. J. Energy Res. (2008), doi:10.1002/er.1398

    Google Scholar 

  21. Wildi-Tremblay, P., Gosselin, L.: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance. Int. J. Energy Res. 31, 867–885 (2007)

    Article  Google Scholar 

  22. Agarwal, A., Gupta, S.K.: Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers. Chemical Engineering Research and Design 86, 123–139 (2008)

    Article  Google Scholar 

  23. Doodman, A., Fesanghary, M., Hosseini, R.: A robust stochastic approach for design optimization of air cooled heat exchangers. Applied Energy (2008), doi:10.1016/j.apenergy.2008.08.021

    Google Scholar 

  24. Wikipedia, heat pipe (2004) (accessed October 25, 2008), http://en.wikipedia.org/wiki/Heat_pipe

  25. What is a Heat Pipe? (2008) (accessed October 25, 2008), http://www.cheresources.com/htpipes.shtml

  26. Geem, Z.W., Hwangbo, H.: Application of harmony search to multi-objective optimization for satellite heat pipe design. In: Proceedings of the US-Korea Conference on Science, Technology, and Entrepreneurship (UKC 2006), CD-ROM (2006)

    Google Scholar 

  27. Rajesh, V.G., Ravindran, K.P.: Optimum heat pipe design: A nonlinear programming approach. International Communications in Heat and Mass Transfer 24, 371–380 (1997)

    Article  Google Scholar 

  28. Wikipedia, economic dispatch (2005) (accessed October 25, 2008), http://en.wikipedia.org/wiki/Economic_dispatch

  29. Lin, C.E., Chen, S.T., Huang, C.L.: A direct Newton-Raphson economic dispatch. IEEE Trans. Power Syst. 7, 1149–1154 (1992)

    Article  Google Scholar 

  30. Lin, C.E., Viviani, G.L.: Hierarchical economic dispatch for piecewise quadratic cost functions. IEEE Trans. Power App. Syst. 103, 1170–1175 (1984)

    Article  Google Scholar 

  31. Wood, A.J., Wollenberg, B.F.: Power generation, operation and control. Wiley, New York (1994)

    Google Scholar 

  32. Yang, H.T., Chen, S.L.: Incorporating a multi-criteria decision procedure into the combined dynamic programming/production simulation algorithm for generation expansion planning. IEEE Trans. Power Syst. 4, 165–175 (1989)

    Article  Google Scholar 

  33. Granville, S.: Optimal reactive dispatch through interior point methods. IEEE Trans. Power Syst. 9, 136–146 (1994)

    Article  Google Scholar 

  34. Chen, C.L., Wang, S.C.: Branch-and-bound scheduling for thermal generating units. IEEE Trans. Energy Convers. 8, 184–189 (1993)

    Article  Google Scholar 

  35. Liang, Z.X., Glover, J.D.: A zoom feature for a dynamic programming solution to economic dispatch including transmission losses. IEEE Trans. Power Syst. 7, 544–550 (1992)

    Article  Google Scholar 

  36. Papageorgiou, L.G., Fraga, E.S.: A mixed integer quadratic programming formulation for the economic dispatch of generators with operating zones. Electric Power Syst. Res. 77, 1292–1296 (2007)

    Article  Google Scholar 

  37. Kuo, C.C.: A novel string structure for economic dispatch problems with practical constraints. Energy Convers. Manage (2008), doi:10.1016/j.enconman.2008.07.007

    Google Scholar 

  38. Li, F.: A comparison of genetic algorithms with conventional techniques on a spectrum of power economic dispatch problems. Expert Syst. Appl. 15, 133–142 (1998)

    Article  Google Scholar 

  39. Baskar, S., Subbaraj, P., Rao, M.V.C.: Hybrid real coded genetic algorithm solution to economic dispatch problem. Comput. Electr. Eng. 29, 407–419 (2003)

    Article  MATH  Google Scholar 

  40. Lin, W.M., Cheng, F.S., Tsay, M.T.: An improved tabu search for economic dispatch with multiple minima. IEEE Trans. Power Syst. 17, 108–112 (2002)

    Article  Google Scholar 

  41. Basu, M.: A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Int. J. Electron Power Energy Syst. 27, 147–153 (2005)

    Article  Google Scholar 

  42. Song, Y.H., Chou, C.S.V., Min, Y.: Large-scale economic dispatch by artificial ant colony search algorithms. Electr. Mach. Power Syst. 27(7), 679–690 (1999)

    Article  Google Scholar 

  43. Somasundaram, P., Kuppusamy, K., Kumudini Devi, R.P.: Economic dispatch with prohibited operating zones using fast computation evolutionary programming algorithm. Electr. Power Syst. Res. 70, 245–252 (2004)

    Article  Google Scholar 

  44. Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18, 1187–1195 (2003)

    Article  Google Scholar 

  45. Selvakumar, A.I., Thanushkodi, K.: Anti-predatory particle swarm optimization: Solution to nonconvex economic dispatch problems. Electr. Power Syst. Res. 78, 2–10 (2008)

    Article  Google Scholar 

  46. Yuan, X., Su, A., Yuan, Y., et al.: An improved PSO for dynamic load dispatch of generators with valve-point effects. Energy (2008), doi:10.1016/j.energy.2008.09.010

    Google Scholar 

  47. Guo, T., Henwood, M.I., van Ooijen, M.: An algorithm for combined heat and power economic dispatch. IEEE Trans. Power Syst. 11, 1778–1784 (1996)

    Article  Google Scholar 

  48. Song, Y.H., Xuan, Q.Y.: Combined heat and power economic dispatch using genetic algorithm based penalty function method. Electric Mach. Power Syst. 26, 363–372 (1998)

    Article  Google Scholar 

  49. Song, Y.H., Chou, C.S., Stonham, T.J.: Combined heat and power economic dispatch by improved ant colony search algorithm. Electric Power Systems Research 52, 115–121 (1999)

    Article  Google Scholar 

  50. Sudhakaran, M., Slochanal, S.M.R.: Integrating genetic algorithms and tabu search for combined heat and power economic dispatch. Power System Stability and Control 1, 67–71 (2003)

    Google Scholar 

  51. Su, C.T., Chiang, C.L.: An incorporated algorithm for combined heat and power economic dispatch. Electric Power Systems Research 69, 187–195 (2004)

    Article  Google Scholar 

  52. Groover, M.P.: Fundamentals of Modern Manufacturing. Wiley, New York (2000)

    Google Scholar 

  53. Tolouei-Rad, M., Bidhendi, I.M.: On the optimization of machining parameters for milling operations. Int. J. Mach. Tools Manuf. 37, 1–16 (1997)

    Article  Google Scholar 

  54. Sonmez, A.I., Baykasoglu, A., Dereli, T., et al.: Dynamic optimization of multipass milling operations via geometric programming. Int. J. Mach. Tools Manuf. 39, 297–320 (1999)

    Article  Google Scholar 

  55. Jha, N.K.: A discrete data base multiple objective optimization of milling operation through geometric programming. Trans. ASME J. Eng. Ind. 112, 368–374 (1990)

    Article  Google Scholar 

  56. Shunmugam, M.S., Bhaskara, R.S.V., Narendran, T.T.: Selection of optimal conditions in multi-pass face-milling using a genetic algorithm. Int. J. Mach. Tools Manuf. 40, 401–414 (2000)

    Article  Google Scholar 

  57. Wang, Z.G., Rahman, M., Wong, Y.S., et al.: Optimization of multi-pass milling using genetic algorithm and genetic simulated annealing. Int. J. Mach. Tools Manuf. 45, 1726–1734 (2005)

    Article  Google Scholar 

  58. Zarei, O., Fesanghary, M., Farshi, B., et al.: Optimization of multi-pass face-milling via harmony search algorithm. Journal of Materials Processing Technology (2008), doi:10.1016/j.jmatprotec.2008.05.029

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fesanghary, M. (2009). Harmony Search Applications in Mechanical, Chemical and Electrical Engineering. In: Geem, Z.W. (eds) Music-Inspired Harmony Search Algorithm. Studies in Computational Intelligence, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00185-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00185-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00184-0

  • Online ISBN: 978-3-642-00185-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics