Skip to main content

Multivariate Calibration Model for a Voltammetric Electronic Tongue Based on a Multiple Output Wavelet Neural Network

  • Chapter
Biologically Inspired Signal Processing for Chemical Sensing

Abstract

Electronic tongues are bioinspired sensing schemes that employ an array of sensors for analysis, recognition or identification in liquid media. An especially complex case happens when the sensors used are of the voltammetric type, as each sensor in the array yields a 1-dimensional data vector. This work presents the use of a Wavelet Neural Network (WNN) with multiple outputs to model multianalyte quantification from an overlapped voltammetric signal. WNN is implemented with a feedforward multilayer perceptron architecture, whose activation functions in its hidden layer neurons are wavelet functions, in our case, the first derivative of a Gaussian function. The neural network is trained using a backpropagation algorithm, adjusting the connection weights along with the network parameters. The principle is applied to the simultaneous quantification of the oxidizable aminoacids tryptophan, cysteine and tyrosine, from its differential-pulse voltammetric signal. WNN generalization ability was validated with training processes of k-fold cross validation with random selection of the testing set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboufadel, E., Schlicker, S.: Discovering wavelets. Wiley, New York (1999)

    MATH  Google Scholar 

  • Addison, P.S.: The illustrated wavelet transform handbook. Institute of Physics Publishing, Bristol (2002)

    Book  MATH  Google Scholar 

  • Akay, M.: Time Frequency and wavelets. In: Akay, M. (ed.) Biomedical Signal Processing: IEEE Press Series in Biomedical Engineering. Wiley—IEEE Press, Piscataway (1997)

    Google Scholar 

  • Alsberg, B.K., Woodward, A.M., Kell, D.B.: An introduction to wavelet transform for chemometricians: a time-frequency approach. Chemometr. Intell. Lab. Syst. 37, 215–239 (1997)

    Article  Google Scholar 

  • Artursson, T., Holmberg, M.: Wavelet transform of electronic tongue data. Sens. Actuators B 87, 379–391 (2002)

    Article  Google Scholar 

  • Bachman, G., Narici, L., Beckenstein, E.: Fourier and wavelet analysis. Springer, New York (2000)

    MATH  Google Scholar 

  • Blatter, C.: Wavelets, a primer. A K Peters Ltd, Natick MA (1988)

    Google Scholar 

  • Beale, R., Jackson, T.: Neural computing, an introduction. IOP Publishing Ltd., Bristol (1992)

    Google Scholar 

  • Cannon, M., Slotine, J.E.: Space-frequency localized basis function networks for nonlinear system estimation and control. Neurocomputing 9, 293–342 (1995)

    Article  MATH  Google Scholar 

  • Ciosek, P., Augustyniak, E., Wroblewski, W.: Polymeric membrane ionselective and cross-sensitive electrode-based electronic tongue for qualitative analysis of beverages. Analyst. 129, 639–644 (2004)

    Article  Google Scholar 

  • Cocchi, M., Hidalgo-Hidalgo-de-Cisneros, J.L., Naranjo-Rodriguez, I., Palacios-Santander, J.M., Seeber, R., Ulrici, A.: Multicomponent analysis of electrochemical signals in the wavelet domain. Talanta 59, 735–749 (2003)

    Article  Google Scholar 

  • Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies, I.: Ten Lectures on wavelets. In: CBMS-NSF Regional Conference Series In Applied Mathematics, Philadelphia, PA. Society for Industrial and Applied Mathematics, vol. 61 (1992)

    Google Scholar 

  • Deisingh, A.K., Stone, D.C., Thompson, M.: Applications of electronic noses and tongues in food analysis. Int. J. Food. Sci. Technol. 39, 587–604 (2004)

    Article  Google Scholar 

  • Di Lorenzo, P.M., Lemmon, C.H.: The neural code for taste in the nucleus of the solitary tract of the rat: effects of adaptation. Brain. Res. 852, 383–397 (2000)

    Article  Google Scholar 

  • Distante, C., Leo, M., Siciliano, P., Persaud, K.C.: On the study of feature extraction methods for an electronic nose. Sens. Actuators B 87, 274–288 (2002)

    Google Scholar 

  • Ensafi, A.A., Khayamian, T., Tabaraki, R.: Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network. Talanta 71, 2021–2028 (2007)

    Article  Google Scholar 

  • Erickson, R.P., Doetsch, G.S., Marshall, D.A.: The gustatory neural response function. J. Gen. Physiol. 49, 247–263 (1965)

    Article  Google Scholar 

  • Fine, T.L.: Feedforward neural network methodology. Springer, New York (1999)

    MATH  Google Scholar 

  • Frank, M.: An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol. 61, 588–618 (1973)

    Article  Google Scholar 

  • Freeman, J.A., Skapura, D.M.: Neural networks: algorithms, applications and programming techniques. Addison-Wesley, Redwood City (1992)

    Google Scholar 

  • Gallardo, J., Alegret, S., de Roman, M.A., Muñoz, R., Hernandez, P.R., Leija, L., del Valle, M.: Determination of ammonium ion employing an electronic tongue based on potentiometric sensors. Anal. Lett. 36, 2893–2908 (2003)

    Article  Google Scholar 

  • Gardner, J.W., Bartlett, P.N.: Electronic noses: Principles and Applications. Oxford University Press, Oxford (1999)

    Google Scholar 

  • Garson, J.: Connectionism. In: Zalta, E.N. (ed.) The Stanford Encyclopaedia of Philosophy (2007), http://plato.stanford.edu/

  • Goswami, J.C., Chan, A.K.: Fundamentals of wavelets. Wiley, New York (1999)

    Google Scholar 

  • Graps, A.: An introduction to wavelets. Comput. Sci. Eng. 2, 50–61 (1995)

    Article  Google Scholar 

  • Guo, Q.X., Liu, L., Cai, W.S., Jiang, Y., Liu, Y.C.: Driving force prediction for inclusion complexation of α-cyclodextrin with benzene derivatives by a wavelet neural network. Chem. Phys. Lett. 290, 514–518 (1998)

    Article  Google Scholar 

  • Gutés, A., Céspedes, F., Cartas, R., Alegret, S., del Valle, M., Gutierrez, J.M., Muñoz, R.: Multivariate calibration model from overlapping voltammetric signals employing wavelet neural networks. Chemometr. Intell. Lab. Syst. 83, 169–179 (2006)

    Article  Google Scholar 

  • Hallock, R.M., Di Lorenzo, P.M.: Temporal coding in the gustatory system. Neurosci. Biobehavioral. Rev. 30, 1145–1160 (2006)

    Article  Google Scholar 

  • Hassoun, M.H.: Fundamentals of artificial neural networks. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  • Haykin, S.: Neural networks, a comprehensive foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  • Hebb, D.: The organization of behavior. In: Anderson, A., Rosenfield, E. (eds.) Neurocomputing, foundations of research. The MIT Press, Cambridge (1949)

    Google Scholar 

  • Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Review 31, 628–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the theory of neural computation. Addison-Wesley, Redwood City (1991)

    Google Scholar 

  • Holmberg, M., Eriksson, M., Krantz-Rülcker, C., Artursson, T., Winquist, F., Lloyd-Spetz, A., Lundström, I.: Second workshop of the second network on artificial olfactory sensing (NOSE II). Sens. Actuators B 101, 213–223 (2004)

    Google Scholar 

  • Hornik, K.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  • Ionescu, R., Llobet, E., Vilanova, X., Brezmes, J., Suegras, J.E., Calderer, J., Correig, X.: Quantitative analysis of nitrogen dioxide in the presence of carbon monoxide using a single tungsten oxide semiconductor sensor and dynamic signal processing. Analyst 127, 1237–1246 (2002)

    Article  Google Scholar 

  • Ionescu, R., Llobet, E., Brezmes, J., Vilanova, X., Correig, X.: Dealing with humidity n the qualitative analysis of carbon monoxide and nitrogen dioxide using a tungsten trioxide sensor and dynamic signal processing. Sens. Actuators B95, 177–182 (2003)

    Google Scholar 

  • Iyengar, S.S., Cho, E.C., Phoha, V.V.: Foundations of wavelet neural networks. Chapman & Hall/CRC, Boca Raton (2002)

    Google Scholar 

  • Jetter, K., Depczynski, U., Molt, K., Niemöller, A.: Principles and applications of wavelet transform to chemometrics. Anal. Chim. Acta. 420, 169–180 (2000)

    Article  Google Scholar 

  • Jones, L.M., Fontanini, A., Katz, D.B.: Gustatory processing: a dynamic system approach. Current Opinion in Neurobiology 16, 420–428 (2006)

    Article  Google Scholar 

  • Kaiser, G.: A friendly guide to wavelets. Birkhäuser, Basel (1994)

    MATH  Google Scholar 

  • Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science, 4th edn. McGraw Hill, New York (2000)

    Google Scholar 

  • Katz, D.B., Nicolelis, M., Simon, S.A.: Gustatory processing is dynamic and distributed. Current Opinion in Neurobiology 12, 448–454 (2002)

    Article  Google Scholar 

  • Khayamian, T., Ensafi, A.A., Benvidi, A.: Extending the dynamic range of copper determination in differential pulse adsorption cathodic stripping voltammetry using wavelet neural network. Talanta 69, 1176–1181 (2006)

    Article  Google Scholar 

  • Kugarajah, T., Zhang, Q.: Multidimensional wavelet frames. IEEE Trans. Neural Netw. 6, 1552–1556 (1995)

    Article  Google Scholar 

  • Legin, A.V., Rudnitskaya, A.M., Vlasov, Y. G., Di Natale, C., D’Amico, A.: The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sens. Actuators B 58, 464–468 (1999)

    Google Scholar 

  • Leung, A.K., Chau, F., Gao, J.: A review on applications of wavelet techniques in chemical analysis: 1989-1997. Chemometr. Intell. Lab. Syst. 43, 165–184 (1998)

    Article  Google Scholar 

  • Llobet, E., Brezmes, J., Ionescu, R., Vilanova, X., Al-Khalifa, S., Gardner, J.W., Barsan, N., Correig, X.: Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens. Actuators B 83, 238–244 (2002)

    Google Scholar 

  • Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  • Mallat, S.: A wavelet tour of signal processing, 2nd edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Meyer, Y.: Wavelets: Algorithms and Applications. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  • Moreno, L., Cartas, R., Merkoçi, A., Alegret, S., Gutiérrez, J.M., Leija, L., Hernández, P.R., Muñoz, R.: Data Compression for a Voltammetric Electronic Tongue Modelled with Artificial Neural Networks. Anal. Lett. 38, 2189–2206 (2005)

    Article  Google Scholar 

  • Moreno, L., Cartas, R., Merkoçi, A., Alegret, S., Leija, L., Hernández, P.R., Muñoz, R.: Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sens. Actuators B 113, 487–499 (2006)

    Google Scholar 

  • Ogawa, H., Sato, M., Yamashita, S.: Multiple sensitivity of chorda tympani fibres of the rat and hamster to gustatory and thermal stimuli. J. Physiol 199, 223–240 (1968)

    Google Scholar 

  • Oussar, Y., Rivals, I., Personnaz, L., Dreyfus, G.: Training wavelet networks for nonlinear dynamic input-output modeling. Neurocomputing 20, 173–188 (1998)

    Article  MATH  Google Scholar 

  • Palacios-Santander, J.M., Jimenez-Jimenez, A., Cubillana-Aguilera, L.M., Naranjo-Rodriguez, I., Hidalgo-Hidalgo-de-Cisneros, J.L.: Use of artificial neural networks, aided by methods to reduce dimensions, to resolve overlapped electrochemical signals. A comparative study including other statistical methods. Microchim. Acta 142, 27–36 (2003)

    Article  Google Scholar 

  • Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE SP Magazine 8, 14–38 (1991)

    Article  Google Scholar 

  • Rudnitskaya, A., Ehlert, A., Legin, A., Vlasov, Y., Büttgenbach, S.: Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater. Talanta 55, 425–431 (2001)

    Article  Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1. MIT, Cambridge (1986)

    Google Scholar 

  • Sarkar, T.K., Su, C.: A tutorial on wavelets from an Electrical Engineering Perspective, Part 2: The Continuous Case. IEEE Antennas and Propagation Magazine 40, 36–49 (1998)

    Article  Google Scholar 

  • Scarcelli, F., Tsoi, A.C.: Universal Aproximation using Feedforward Neural networks: A survey of some existing methods and some new results. Neural Networks 11, 15–37 (1998)

    Article  Google Scholar 

  • Simon, S.A., De Araujo, I.E., Gutierrez, R., Nicolelis, M.A.: The neural mechanisms of gustation: a distributed processing code. Nature Rev. Neurosci. 7, 890–901 (2006)

    Article  Google Scholar 

  • Tabaraki, R., Khayamian, T., Ensafi, A.A.: Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressure in supercritical carbon dioxide. J. Molec. Graphics Model 25, 46–54 (2006)

    Article  Google Scholar 

  • Vlasov, Y., Legin, A.A.: Non-selective chemical sensors in analytical chemistry: from electronic nose to electronic tongue. Fresenius J. Anal. Chem. 361, 255–260 (1998)

    Article  Google Scholar 

  • Winquist, F., Holmin, S., Krants-Rülcker, C., Wide, P., Lundström, I.: A hybrid electronic tongue. Anal. Chim. Acta 406, 147–157 (2000)

    Article  Google Scholar 

  • Zhang, J., Walter, G.G., Miao, Y., Lee, W.N.W.: Wavelet neural networks for function learning. IEEE Trans. Signal Processing 43, 1485–1497 (1995)

    Article  Google Scholar 

  • Zhang, Q., Benveniste, A.: Wavelet Networks. IEEE Trans. Neural Netw. 3, 889–898 (1992)

    Article  Google Scholar 

  • Zhang, X., Oi, J., Zhang, R., Liu, M., Hu, Z., Xue, H., Tao Fan, B.: Prediction of programmed-temperature retention values of naphthas by wavelet neural networks. Comput. Chem. 25, 125–133 (2001)

    Article  Google Scholar 

  • Zhong, H., Zhang, J., Gao, M., Zheng, J., Li, G., Chen, L.: The discrete wavelet neural network and its application in oscillographic chronopotentiometric determination. Chemometr. Intell. Lab. 59, 67–74 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cartas, R. et al. (2009). Multivariate Calibration Model for a Voltammetric Electronic Tongue Based on a Multiple Output Wavelet Neural Network. In: Gutiérrez, A., Marco, S. (eds) Biologically Inspired Signal Processing for Chemical Sensing. Studies in Computational Intelligence, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00176-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00176-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00175-8

  • Online ISBN: 978-3-642-00176-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics