Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 188))

Abstract

Research on nervous systems has had an important influence on new information processing paradigms and has led to the invention of artificial neural networks in the past. In recent work we have analyzed the olfactory pathway of insects as a pattern classification device with unstructured (random) connectivity. In this chapter I will review these and related results and discuss the implications for applications in artificial olfaction. As we will see, successful classification depends on appropriate connectivity degrees and activation thresholds, as well as large enough numbers of neurons, because the strategy essentially rests on the law of large numbers. Taken as an inspiration for artificial olfaction, the analysis suggests a new paradigm of random kernel methods for odour and general pattern classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Av-Ron, E., Vibert, J.F.: A model for temporal and intensity coding in insect olfaction by a network of inhibitory neurons. Biosystems 39, 241–250 (1996)

    Article  Google Scholar 

  • Bhalerao, S., Sen, A., Stocker, R., Rodrigues, V.: Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of Drosophila melanogaster. J. Neurobiol. 54, 577–592 (2003)

    Article  Google Scholar 

  • Brody, C.D., Hopfield, J.J.: Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron. 37, 843–852 (2003)

    Article  Google Scholar 

  • Cazelles, B., Courbage, M., Rabinovich, M.I.: Anti-phase regularization of coupled chaotic maps modeling bursting neurons. Europhys. Lett. 56, 504–509 (2001)

    Article  Google Scholar 

  • Christensen, T.A., D’Alessandro, D., Lega, J., Hildebrand, J.G.: Morphometric modeling of olfactory circuits in the insect antennal lobe: I. simulations of spiking local interneurons. Biosystems 61, 143–153 (2001)

    Article  Google Scholar 

  • Cleland, T.A., Linster, C.: Computation in the olfactory system. Chem. Senses 30, 801–813 (2005)

    Article  Google Scholar 

  • Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  • Cover, T.: Geometric and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE T. Electron. Comput. 14, 326 (1965)

    Article  MATH  Google Scholar 

  • Ernst, K.D., Boeckh, J., Boeckh, V.: A neuroanatomical study of the organization of the central antennal pathways in insects. Cell Tissue Res. 329, 143–162 (1977)

    Google Scholar 

  • Farivar, S.S.: Cytoarchitecture of the Locust Olfactory System. Dissertation, California Institute of Technology (2005)

    Google Scholar 

  • Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A., Mombaerts, P.: Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic. Cell 117, 833–846 (2004)

    Article  Google Scholar 

  • Feinstein, P., Mombaerts, P.: A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004)

    Article  Google Scholar 

  • Friedrich, R.W., Laurent, G.: Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001)

    Article  Google Scholar 

  • Fu, J., Yang, X., Yang, X., Li, G., Freeman, W.: Application of biologically modeled chaotic neural network to pattern recognition in artificial olfaction. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 5, pp. 4666–4669 (2005)

    Google Scholar 

  • Gao, Q., Yuan, B., Chess, A.: Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3, 780–785 (2000)

    Article  Google Scholar 

  • Galan, R.F., Sachse, S., Galizia, C.G., Herz, A.V.M.: Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Comput. 16, 999–1012 (2004)

    Article  MATH  Google Scholar 

  • García-Sanchez, M., Huerta, R.: Design Parameters of the Fan-Out Phase of Sensory Systems. J. Comput. Neurosci. 15, 5–17 (2003)

    Article  Google Scholar 

  • Getz, W.M., Lutz, A.: A neural network model of general olfactory coding in the insect antennal lobe. Chem. Senses 24, 351–372 (1999)

    Article  Google Scholar 

  • Gill, D.S., Pearce, T.C.: Wiring the olfactory bulb - activity-dependent models of axonal targeting in the developing olfactory pathway. Rev. Neurosci. 14, 63–72 (2003)

    Google Scholar 

  • Hansson, B.S., Ochieng, S.A., Grosmaitre, X., Anton, S., Njagi, P.G.N.: Physiological responses and central nervous projections of antennal olfactory receptor neurons in the adult desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J. Comp. Physiol. A 179, 157–167 (1996)

    Article  Google Scholar 

  • Hopfield, J.J.: Olfactory computation and object perception. P. Natl. Acad. Sci. USA 88(15), 6462–6466 (1991)

    Article  Google Scholar 

  • Hopfield, J.J.: Odor space and olfactory processing: collective algorithms and neural implementation. P. Natl. Acad. Sci. USA 96, 12506–12511 (1999)

    Article  Google Scholar 

  • Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)

    Article  MATH  Google Scholar 

  • Huerta, R., Nowotny, T.: Classifying handwritten numbers with the “insect mushroom bodies (in preparation) (2007)

    Google Scholar 

  • Jortner, R.A., Farivar, S.S., Laurent, G.: A Simple Connectivity Scheme for Sparse Coding in an Olfactory System. J. Neurosci. 27, 1659–1669 (2007)

    Article  Google Scholar 

  • Laurent, G., Wehr, M., Davidowitz, H.: Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837–3847 (1996)

    Google Scholar 

  • Laurent, G.: A systems perspective on early olfactory coding. Science 286, 723–728 (1999)

    Article  Google Scholar 

  • Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Abarbanel, H.D.I.: Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001)

    Article  Google Scholar 

  • Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895 (2002)

    Article  Google Scholar 

  • Leitch, B., Laurent, G.: GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372, 487–514 (1996)

    Article  Google Scholar 

  • Li, Z., Hertz, J.: Odour recognition and segmentation by a model olfactory bulb and cortex. Network 11, 83–102 (2000)

    Article  MATH  Google Scholar 

  • Linster, C., Cleland, T.A.: How spike synchronization among olfactory neurons can contribute to sensory discrimination. J. Comput. Neurosci. 10, 187–193 (2001)

    Article  Google Scholar 

  • Linster, C., Masson, C., Kerszberg, M., Personnaz, L., Dreyfus, G.: Computational diversity in a formal model of the insect olfactory macroglomerulus. Neural Comput. 5, 228–241 (1993)

    Article  Google Scholar 

  • Linster, C., Smith, B.H.: A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: Overshadowing, blocking and unblocking can arise from lateral inhibition. Behav. Brain Res. 87, 1–14 (1997)

    Article  Google Scholar 

  • Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  Google Scholar 

  • Masuda-Nakagawa, L.M., Tanaka, N.K., O’Kane, C.J.: Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proc. Natl. Acad. Sci. USA 102, 19027–19032 (2005)

    Article  Google Scholar 

  • McCulloch, W.S., Pitts, W.: Logical Calculus of Ideas Immanent in Nervous Activity. B. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  • Nowotny, T., Huerta, R.: Explaining Synchrony in feed-forward networks: Are McCulloch-Pitts neurons good enough? Biol. Cybern. 89, 237–241 (2003)

    Article  MATH  Google Scholar 

  • Nowotny, T., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. J. Comput. Neurosci. 15, 271–281 (2003)

    Article  Google Scholar 

  • Nowotny, T., Huerta, R., Abarbanel, H.D.I., Rabinovich, M.I.: Self-organization in the olfactory system: one shot odor recognition in insects. Biol. Cybern. 93, 436–446 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)

    Article  Google Scholar 

  • Rabinovich, M.I., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition. Phys. Rev. Lett. 87, 068102 (2001)

    Article  Google Scholar 

  • Rulkov, N.F.: Modeling of spiking-bursting behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)

    Article  MathSciNet  Google Scholar 

  • Sato, Y., Miyasaka, N., Yoshihara, Y.: Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebra fish. J. Neurosci. 27, 1606–1615 (2007)

    Article  Google Scholar 

  • Schinor, N., Schneider, F.W.: A small neural net simulates coherence and short-term memory in an insect olfactory system. Phys. Chem. Chem. Phys. 3, 4060–4071 (2001)

    Article  Google Scholar 

  • Scott, K., Brady Jr., R., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., Axel, R.: A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001)

    Article  Google Scholar 

  • Tanaka, N.K., Awasaki, T., Shimada, T., Ito, K.: Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004)

    Article  Google Scholar 

  • Tozaki, H., Tanaka, S., Hirata, T.: Theoretical consideration of olfactory axon projection with an activity-dependent neural network model. Mol. Cell Neurosci. 26, 503–517 (2004)

    Article  Google Scholar 

  • Traub, R.D., Miles, R.: Neural networks of the hippocampus. Cambridge University Press, New York (1991)

    Google Scholar 

  • Vosshall, L.B., Wong, A.M., Axel, R.: An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000)

    Article  Google Scholar 

  • Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B., Axel, R.: Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003)

    Article  Google Scholar 

  • Wang, Y., Wright, N.J., Guo, H., Xie, Z., Svoboda, K., Malinow, R., Smith, D.P., Zhong, Y.: Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron. 29, 267–276 (2001)

    Article  Google Scholar 

  • Wehr, M., Laurent, G.: Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384(6605), 162–166 (1996)

    Article  Google Scholar 

  • White, J., Dickinson, T.A., Walt, D.R., Kauer, J.S.: An olfactory neuronal network for vapor recognition in an artificial nose. Biol. Cyber. 78, 245–251 (1998)

    Article  MATH  Google Scholar 

  • White, J., Kauer, J.S.: Odor recognition in an artificial nose by spatio-temporal processing using an olfactory neuronal network. Neurocomputing 26-27, 919–924 (1999)

    Article  Google Scholar 

  • Wong, A.M., Wang, J.W., Axel, R.: Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)

    Article  Google Scholar 

  • Wüstenberg, D.G., Boytcheva, M., Grünewald, B., Byrne, J.H., Menzel, R., Baxter, D.A.: Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J. Neurophysiol. 92, 2589–2603 (2004)

    Article  Google Scholar 

  • Yasuyama, K., Meinertzhagen, I.A., Schurmann, F.W.: Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J. Comp. Neurol. 445, 211–226 (2002)

    Article  Google Scholar 

  • Zou, Z., Li, F., Buck, L.B.: Odor maps in the olfactory cortex. Proc. Natl. Acad. Sci. USA 102, 7724–7729 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nowotny, T. (2009). “Sloppy Engineering” and the Olfactory System of Insects. In: Gutiérrez, A., Marco, S. (eds) Biologically Inspired Signal Processing for Chemical Sensing. Studies in Computational Intelligence, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00176-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00176-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00175-8

  • Online ISBN: 978-3-642-00176-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics