Skip to main content

PPARα, A Key Regulator of Hepatic Energy Homeostasis in Health and Disease

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases

Abstract

Liver participates in the metabolism of almost all ­nutrients and contributes to maintaining balanced levels of energy-providing molecules in the circulating plasma. This homeostatic regulation plays a central role during the times of food deprivation, for instance, at night for animals feeding during the daytime, and when plenty of food has been ingested. For their contribution to the maintenance of this energy balance, liver cells depend on a variety of transcription factors that control gene expression. Among those, the peroxisome proliferator activated receptors (PPARs) and more particularly the PPARα isotype are the key actors in the regulation of hepatic functions. Below, we review the roles of PPARα in the liver, in both health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalik L et al (2006) International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58(4):726–741

    Article  PubMed  CAS  Google Scholar 

  2. Nuclear Receptors Nomenclature Committee (1999) A ­unified nomenclature system for the nuclear receptor ­superfamily. Cell 97(2):161–163

    Article  Google Scholar 

  3. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  PubMed  CAS  Google Scholar 

  4. Ashby J et al (1994) Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum Exp Toxicol 13(Suppl 2):S1–S117

    Article  Google Scholar 

  5. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A 94(9):4312–4317

    Article  PubMed  CAS  Google Scholar 

  6. Kliewer SA et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94(9):4318–4323

    Article  PubMed  CAS  Google Scholar 

  7. Krey G et al (1997) Fatty acids, eicosanoids, and ­hypolipidemic agents identified as ligands of peroxisome ­proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11(6):779–791

    Article  PubMed  CAS  Google Scholar 

  8. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270(22):12953–12956

    Article  PubMed  CAS  Google Scholar 

  9. Schoonjans K et al (1995) Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 270(33):19269–19276

    Article  PubMed  CAS  Google Scholar 

  10. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45(2):120–159

    Article  PubMed  CAS  Google Scholar 

  11. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 90(6):2160–2164

    Article  PubMed  CAS  Google Scholar 

  12. Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–263

    Article  PubMed  CAS  Google Scholar 

  13. IJ A et al (2004) In vivo activation of PPAR target genes by RXR homodimers. EMBO J 23(10):2083–2091

    Article  CAS  Google Scholar 

  14. Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61(4):393–416

    Article  PubMed  CAS  Google Scholar 

  15. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68(5):879–887

    Article  PubMed  CAS  Google Scholar 

  16. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11(2):433–439

    PubMed  CAS  Google Scholar 

  17. Tien ES, Hannon DB, Thompson JT, Vanden Heuvel JP (2006) Examination of ligand-dependent coactivator recruitment by peroxisome proliferator-activated Receptor-alpha (PPARalpha). PPAR Res 2006:69612

    PubMed  Google Scholar 

  18. Liu X et al (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451(7180):846–850

    Article  PubMed  CAS  Google Scholar 

  19. Gelman L, Michalik L, Desvergne B, Wahli W (2005) Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. Curr Opin Cell Biol 17(2): 216–222

    Article  PubMed  CAS  Google Scholar 

  20. Pascual G et al (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437(7059):759–763

    Article  PubMed  CAS  Google Scholar 

  21. Hoekstra M, Kruijt JK, Van Eck M, Van Berkel TJ (2003) Specific gene expression of ATP-binding cassette transporters and nuclear hormone receptors in rat liver parenchymal, endothelial, and Kupffer cells. J Biol Chem 278(28):25448–25453

    Article  PubMed  CAS  Google Scholar 

  22. Peters JM, Rusyn I, Rose ML, Gonzalez FJ, Thurman RG (2000) Peroxisome proliferator-activated receptor alpha is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis 21(4): 823–826

    Article  PubMed  CAS  Google Scholar 

  23. Bedu E, Wahli W, Desvergne B (2005) Peroxisome ­proliferator-activated receptor beta/delta as a therapeutic target for metabolic diseases. Expert Opin Ther Targets 9(4):861–873

    Article  PubMed  CAS  Google Scholar 

  24. Hellemans K et al (2003) Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 124(1):184–201

    Article  PubMed  CAS  Google Scholar 

  25. Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142(10):4195–4202

    Article  PubMed  CAS  Google Scholar 

  26. Anghel SI, Bedu E, Vivier CD, Descombes P, Desvergne B, Wahli W (2007) Adipose tissue integrity as a prerequisite for systemic energy balance: a critical role for peroxisome proliferator-activated receptor gamma. J Biol Chem 282(41): 29946–29957

    Article  PubMed  CAS  Google Scholar 

  27. Patsouris D, Reddy JK, Muller M, Kersten S (2006) Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147(3):1508–1516

    Article  PubMed  CAS  Google Scholar 

  28. Remick J, Weintraub H, Setton R, Offenbacher J, Fisher E, Schwartzbard A (2008) Fibrate therapy: an update. Cardiol Rev 16(3):129–141

    Article  PubMed  Google Scholar 

  29. Schoonjans K et al (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15(19): 5336–5348

    PubMed  CAS  Google Scholar 

  30. Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75(2):384–390

    Article  PubMed  CAS  Google Scholar 

  31. Peters JM et al (1997) Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272(43):27307–27312

    Article  PubMed  CAS  Google Scholar 

  32. Staels B et al (1995) Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 95(2): 705–712

    Article  PubMed  CAS  Google Scholar 

  33. Vu-Dac N et al (2003) Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J Biol Chem 278(20):17982–17985

    Article  PubMed  CAS  Google Scholar 

  34. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N (1998) Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem 273(27):16710–16714

    Article  PubMed  CAS  Google Scholar 

  35. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272(45):28210–28217

    Article  PubMed  CAS  Google Scholar 

  36. Tan NS et al (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22(14): 5114–5127

    Article  PubMed  CAS  Google Scholar 

  37. Schachtrup C, Emmler T, Bleck B, Sandqvist A, Spener F (2004) Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Biochem J 382(Pt 1):239–245

    PubMed  CAS  Google Scholar 

  38. Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116(3):571–580

    Article  PubMed  CAS  Google Scholar 

  39. Brandt JM, Djouadi F, Kelly DP (1998) Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273(37): 23786–23792

    Article  PubMed  CAS  Google Scholar 

  40. Barrero MJ, Camarero N, Marrero PF, Haro D (2003) Control of human carnitine palmitoyltransferase II gene transcription by peroxisome proliferator-activated receptor through a partially conserved peroxisome proliferator-responsive element. Biochem J 369(Pt 3):721–729

    Article  PubMed  CAS  Google Scholar 

  41. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103(11):1489–1498

    Article  PubMed  CAS  Google Scholar 

  42. Patsouris D et al (2004) PPARalpha governs glycerol metabolism. J Clin Invest 114(1):94–103

    PubMed  CAS  Google Scholar 

  43. Sugden MC, Bulmer K, Augustine D, Holness MJ (2001) Selective modification of pyruvate dehydrogenase kinase isoform expression in rat pancreatic islets elicited by starvation and activation of peroxisome proliferator-activated receptor-alpha: implications for glucose-stimulated insulin secre. Diabetes 50(12):2729–2736

    Article  PubMed  CAS  Google Scholar 

  44. Koo SH et al (2004) PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 10(5):530–534

    Article  PubMed  CAS  Google Scholar 

  45. Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–1577

    Article  PubMed  CAS  Google Scholar 

  46. Kersten S et al (2001) The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism. FASEB J 15(11):1971–1978

    Article  PubMed  CAS  Google Scholar 

  47. Cahill GF Jr (2006) Fuel metabolism in starvation. Annu Rev Nutr 26:1–22

    Article  PubMed  CAS  Google Scholar 

  48. Hsu MH, Savas U, Griffin KJ, Johnson EF (2001) Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor alpha in HepG2 cells. J Biol Chem 276(30): 27950–27958

    Article  PubMed  CAS  Google Scholar 

  49. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426–437

    Article  PubMed  CAS  Google Scholar 

  50. Inagaki T et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425

    Article  PubMed  CAS  Google Scholar 

  51. Staels B (2006) When the Clock stops ticking, metabolic syndrome explodes. Nat Med 12(1):54–55; discussion 55

    Article  PubMed  CAS  Google Scholar 

  52. Yang X et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126(4):801–810

    Article  PubMed  CAS  Google Scholar 

  53. Lemberger T et al (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271(3):1764–1769

    Article  PubMed  CAS  Google Scholar 

  54. Isobe Y, Isobe M (1998) Circadian rhythm of Arg-vasopressin contents in the suprachiasmatic nucleus in relation to corticosterone. Brain Res 800(1):78–85

    Article  PubMed  CAS  Google Scholar 

  55. Panda S et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3): 307–320

    Article  PubMed  CAS  Google Scholar 

  56. Rudic RD et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2(11):e377

    Article  CAS  Google Scholar 

  57. Turek FW et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308(5724): 1043–1045

    Article  PubMed  CAS  Google Scholar 

  58. Lemmer B (2006) Clinical chronopharmacology of the cardiovascular system: hypertension and coronary heart disease. Clin Ter 157(1):41–52

    PubMed  Google Scholar 

  59. Lemmer B (2006) The importance of circadian rhythms on drug response in hypertension and coronary heart disease – from mice and man. Pharmacol Ther 111(3):629–651

    Article  PubMed  CAS  Google Scholar 

  60. Desvergne B, Michalik L, Wahli W (2004) Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol 18(6):1321–1332

    Article  PubMed  CAS  Google Scholar 

  61. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361

    Article  PubMed  CAS  Google Scholar 

  62. Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116(3):581–589

    Article  PubMed  CAS  Google Scholar 

  63. Devchand PR (2008) Glitazones and the cardiovascular system. Curr Opin Endocrinol Diabetes Obes 15(2):188–192

    PubMed  CAS  Google Scholar 

  64. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384(6604):39–43

    Article  PubMed  CAS  Google Scholar 

  65. Zandbergen F, Plutzky J (2007) PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta 1771(8): 972–982

    PubMed  CAS  Google Scholar 

  66. Gervois P et al (2001) Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor alpha agonists via inhibition of CCAAT box/enhancer-binding protein beta. J Biol Chem 276(36): 33471–33477

    Article  PubMed  CAS  Google Scholar 

  67. Kleemann R et al (2004) Evidence for anti-inflammatory activity of statins and PPARalpha activators in human C-reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro. Blood 103(11):4188–4194

    Article  PubMed  CAS  Google Scholar 

  68. Peters JM, Cheung C, Gonzalez FJ (2005) Peroxisome proliferator-activated receptor-alpha and liver cancer: where do we stand? J Mol Med 83(10):774–785

    Article  PubMed  CAS  Google Scholar 

  69. Peters JM, Cattley RC, Gonzalez FJ (1997) Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14, 643. Carcinogenesis 18(11):2029–2033

    Article  PubMed  CAS  Google Scholar 

  70. Rao MS, Reddy JK (1996) Hepatocarcinogenesis of peroxisome proliferators. Ann N Y Acad Sci 804:573–587

    Article  PubMed  CAS  Google Scholar 

  71. Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448(2):159–177

    PubMed  CAS  Google Scholar 

  72. Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ (2007) Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 27(12):4238–4247

    Article  PubMed  CAS  Google Scholar 

  73. Johnson SM et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  PubMed  CAS  Google Scholar 

  74. He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  PubMed  CAS  Google Scholar 

  75. Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008) PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118(2):683–694

    PubMed  Google Scholar 

  76. Kiyosawa K et al (2004) Hepatocellular carcinoma: recent trends in Japan. Gastroenterology 127(5 Suppl 1): S17–S26

    Article  Google Scholar 

  77. Moriya K et al (1997) Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78(7): 1527–1531

    PubMed  CAS  Google Scholar 

  78. Michalik L, Wahli W (2008) PPARs mediate lipid signaling in inflammation and cancer. PPAR Res. 2008:134059

    Google Scholar 

  79. Panigrahy D et al (2008) PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A 105(3): 985–990

    Article  PubMed  Google Scholar 

  80. Elsharkawy AM, Oakley F, Mann DA (2005) The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10(5):927–939

    Article  PubMed  CAS  Google Scholar 

  81. Michalik L, Wahli W (2006) Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest 116(3):598–606

    Article  PubMed  CAS  Google Scholar 

  82. Ip E, Farrell G, Hall P, Robertson G, Leclercq I (2004) Administration of the potent PPARalpha agonist, Wy-14, 643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39(5):1286–1296

    Article  PubMed  CAS  Google Scholar 

  83. Toyama T et al (2004) PPARalpha ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem Biophys Res Commun 324(2):697–704

    Article  PubMed  CAS  Google Scholar 

  84. Skrtic S et al (2005) Decreased expression of peroxisome proliferator-activated receptor alpha and liver fatty acid binding protein after partial hepatectomy of rats and mice. Liver Int 25(1):33–40

    Article  PubMed  CAS  Google Scholar 

  85. Anderson SP, Yoon L, Richard EB, Dunn CS, Cattley RC, Corton JC (2002) Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice. Hepatology 36(3):544–554

    Article  PubMed  CAS  Google Scholar 

  86. Wheeler MD, Smutney OM, Check JF, Rusyn I, Schulte-Hermann R, Thurman RG (2003) Impaired Ras membrane association and activation in PPARalpha knockout mice after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 284(2):G302–G312

    Google Scholar 

  87. Hazra S et al (2004) Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 279(12): 11392–11401

    Article  PubMed  CAS  Google Scholar 

  88. Yavrom S, Chen L, Xiong S, Wang J, Rippe RA, Tsukamoto H (2005) Peroxisome proliferator-activated receptor gamma suppresses proximal alpha1(I) collagen promoter via inhibition of p300-facilitated NF-I binding to DNA in hepatic stellate cells. J Biol Chem 280(49):40650–40659

    Article  PubMed  CAS  Google Scholar 

  89. Marchesini G et al (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4): 917–923

    Article  PubMed  Google Scholar 

  90. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114(4):842–845

    Article  PubMed  CAS  Google Scholar 

  91. Belfort R et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355(22):2297–2307

    Article  PubMed  CAS  Google Scholar 

  92. Kallwitz ER, McLachlan A, Cotler SJ (2008) Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J Gastroenterol 14(1):22–28

    Article  PubMed  CAS  Google Scholar 

  93. Rubenstrunk A, Hanf R, Hum DW, Fruchart JC, Staels B (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771(8): 1065–1081

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Liliane Michalik for discussions and stimulating comments on the manuscript. They also acknowledge grant support from the Swiss National Science Foundation and the Etat de Vaud.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Wahli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leuenberger, N., Wahli, W. (2010). PPARα, A Key Regulator of Hepatic Energy Homeostasis in Health and Disease. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics