Skip to main content

ER Stress Signaling in Hepatic Injury

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases

Abstract

The endoplasmic reticulum (ER) is an essential membrane-bound organelle for protein synthesis, oxidative protein folding, and posttranslational modifications, most notably the addition of oligosaccharides and the formation of disulfide bonds [1–6]. The ER is also a site for biosynthesis of lipids and sterols and for storing and releasing Ca2+ which is involved in numerous cellular signal transduction pathways. Molecular chaperones in the ER ensure proper folding and targeting of nascent proteins. Unfolded or malfolded proteins (as high as 30% of nascent proteins) are retained in the ER and targeted for retrotranslocation to the cytoplasm by the machinery of ER associated degradation (ERAD), and rapidly degraded through the ubiquitin-­proteosomal pathways [7, 8]. Physiological or pathological conditions such as increased translation of secretory proteins, reduced capacity of folding and proteasomal degradation, alterations of redox state and Ca2+ levels, ATP depletion, and improper posttranslational modifications perturb the homeostasis of ER and cause accumulation of unfolded proteins which stresses the ER leading to an adaptive response (referred to as the unfolding protein response, UPR) to dampen the stress. Prolonged or severe UPR can lead to an attempt to delete the cell which is termed ER stress response [1–6]. Both responses are critical for the survival of the organism and an intricate relationship exists due to overlap and interplay between the two responses. In this chapter, we highlight the general signaling pathways of UPR and ER stress response, summarize the role of ER stress in a number of experimental or naturally occurring models of liver disease, and discuss our recent advances in alcohol or homocysteine-induced ER stress response and hepatic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALT:

alanine aminotransferase

AMP:

adenosine monophosphate

ARE:

antioxidant response element

ASK1:

apoptosis signal regulated kinase 1

ATF:

activating transcription factor

Atg:

autophagy

BHMT:

betaine homocysteine methyltransferase

BI-1:

Bax inhibitor-1

Bim:

a proapoptotic BH3-only member of the Bcl-2 family

CBS:

cystathionine β-synthase

CHOP:

C/EBP-homologous protein

CREBH:

cyclic-AMP responsive element binding protein H

eIF2αeukaryotic translation initiation factor 2 :

alpha subunit

EOR:

ER overload response

ERO1:

ER oxidase 1

ER:

endoplasmic reticulum

ERAD:

ER associated degradation

ERSE:

endoplasmic reticulum stress response element

Foxa:

forkhead box protein

GCN2:

general control of nitrogen protein kinase

GRP78:

glucose-regulated protein 78

GSH:

glutathione

GSK:

glycogen synthase kinase

HBV:

hepatitis B virus

HCV:

hepatitis C virus

HERP:

homocysteine-induced ER protein

Hcy:

homocysteine

HHcy:

hyperhomocysteinemia

IKK:

inhibitor of κB kinase

IRE:

inositol requiring enzyme

IRS-1:

insulin receptor substrate-1

JNK:

c-jun-N-terminal kinase

MHC:

major histocompatability complex

MTHFR:

5,10-methylenetetrahydrofolate reductase

MTP:

microsomal triglyceride transfer protein

NAFLD:

nonalcoholic fatty liver disease

NASH:

nonalcoholic steatohepatitis

NF-κB:

nuclear factor κB

Nrf-2:

NF-E2-related factor-2

NTBC:

2-(2-nitro-4-trifluoromethylbenzyol)-1,3-cyclohexanedione

OASIS:

old astrocyte specifically induced substance

ORP150:

oxygen-regulated protein 150

PDI:

protein disulphide isomerase

PEMT:

phosphatidyl ethanolamine methyl transferase

PERK:

protein kinase ds RNA-dependent-like ER kinase

PKB:

protein kinase B

PKR:

protein kinase dsRNA-dependent

PPARα:

peroxisome proliferator-activated receptor-alpha

RT-PCR:

reverse transcriptase–polymerase chain reaction

ROS:

reactive oxygen species

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

SREBP:

sterol regulatory element binding protein

sXBP1:

spliced XBP1

TRAF2:

tumor necrosis factor receptor-associated factor-2

TRB3:

tribbles 3

TNF:

tumor necrosis factor

TNFR1:

TNF receptor 1

TOR:

target of rapamycin

UPR:

unfolded protein response

XBP1:

X box binding protein 1

References

  1. Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol. 2007; 18(6):716

    Article  PubMed  CAS  Google Scholar 

  2. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–529

    Article  PubMed  CAS  Google Scholar 

  3. Kaplowitz N, Than TA, Shinohara M, Ji C. Endoplasmic reticulum stress and liver injury. Semin Liver Dis. 2007; 27(4):367–377

    Article  PubMed  CAS  Google Scholar 

  4. Ji C, Kaplowitz N. ER stress: can the liver cope? J Hepatol. 2006;45(2):321–333

    Article  PubMed  CAS  Google Scholar 

  5. Ron D, Hubbard SR. How IRE1 reacts to ER stress. Cell. 2008;132(1):24–26

    Article  PubMed  CAS  Google Scholar 

  6. Lin JH, Li H, Yasumura D, et al IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007; 318(5852):944

    Article  PubMed  CAS  Google Scholar 

  7. Schubert U, Antón LC, Gibbs J, et al Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404(6779):770–774

    Article  PubMed  CAS  Google Scholar 

  8. Ghaemmaghami S, Huh WK, Bower K, et al Global analysis of protein expression in yeast. Nature. 2003;425(6959): 737–741

    Article  PubMed  CAS  Google Scholar 

  9. Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta-cellfailure and diabetes. Endocr Rev. 2008;29(3):317–333

    Article  PubMed  CAS  Google Scholar 

  10. Kozutsumi Y, Segal M, Normington K, et al The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988; 332(6163):462–464

    Article  PubMed  CAS  Google Scholar 

  11. Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313(5783):104–107

    Article  PubMed  CAS  Google Scholar 

  12. Wu J, Rutkowski DT, Dubois M, et al ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007;13(3):351–364

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto K, Sato T, Matsui T, et al Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–376

    Article  PubMed  CAS  Google Scholar 

  14. Adachi Y, Yamamoto K, Okada T, et al ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 2008;33(1):75–89

    Article  PubMed  CAS  Google Scholar 

  15. Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2006;38(3):317–332

    Article  PubMed  CAS  Google Scholar 

  16. Matus S, Lisbona F, Torres M, et al The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr Mol Med. 2008;8(3):157–172

    Article  PubMed  CAS  Google Scholar 

  17. Ullman E, Fan Y, Stawowczyk M, et al Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ. 2008;15(2):422–425

    Article  PubMed  CAS  Google Scholar 

  18. Nagai H, Noguchi T, Takeda K, Ichijo H. Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol. 2007;40(1):1–6

    PubMed  CAS  Google Scholar 

  19. Sekine Y, Takeda K, Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med. 2006;6(1):87–97

    Article  PubMed  CAS  Google Scholar 

  20. Urano F, Wang X, Bertolotti A, et al Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–666

    Article  PubMed  CAS  Google Scholar 

  21. Xue X, Piao JH, Nakajima A, et al Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem. 2005;280(40):33917–33925

    Article  PubMed  CAS  Google Scholar 

  22. Hetz C, Bernasconi P, Fisher J, et al Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science. 2006;312(5773):572–576

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, Armstrong JS. Bax and the mitochondrial permeability transition cooperate in the release of cytochrome c during endoplasmic reticulum-stress-induced apoptosis. Cell Death Differ. 2007;14(4):703–715

    Article  PubMed  CAS  Google Scholar 

  24. Deniaud A, Sharaf el dein O, Maillier E, et al Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 2008;27(3):285–299

    Article  PubMed  CAS  Google Scholar 

  25. Sanges D, Marigo V. Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: differential contribution of caspase-12 and AIF. Apoptosis. 2006;11(9):1629–1641

    Article  PubMed  CAS  Google Scholar 

  26. Tan Y, Dourdin N, Wu C, et al Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 2006;281(23):16016–16024

    Article  PubMed  CAS  Google Scholar 

  27. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381–389

    Article  PubMed  CAS  Google Scholar 

  28. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, et al Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002;109(4):525–532

    PubMed  CAS  Google Scholar 

  29. Puthalakath H, O’Reilly LA, Gunn P, et al ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 2007;129(7):1337–1349

    Article  PubMed  CAS  Google Scholar 

  30. Sevier CS, Kaiser CA. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta. 2008;1783 (4):549–556

    Article  PubMed  CAS  Google Scholar 

  31. Jousse C, Deval C, Maurin AC, et al TRB3 inhibits the transcriptional activation of stress-regulated genes by a negative feedback on the ATF4 pathway. J Biol Chem. 2007;282(21):15851–15861

    Article  PubMed  CAS  Google Scholar 

  32. Chen XL, Ren KH, He HW, Shao RG. Involvement of PI3K/AKT/GSK3beta pathway in tetrandrine-induced G1 arrest and apoptosis. Cancer Biol Ther. 2008;7(7):1073–1078

    Article  PubMed  CAS  Google Scholar 

  33. Srinivasan S, Ohsugi M, Liu Z, et al Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes. 2005;54(4):968–975

    Article  PubMed  CAS  Google Scholar 

  34. Dey M, Cao C, Sicheri F, Dever TE. Conserved intermolecular salt bridge required for activation of protein kinases PKR, GCN2, and PERK. J Biol Chem. 2007;282(9):6653–6660

    Article  PubMed  CAS  Google Scholar 

  35. Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA. PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell. 2005;16(12):5493–5501.

    Article  PubMed  CAS  Google Scholar 

  36. Horton JD, Goldstein JL, Brown MS. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol. 2002;67:491–498

    Article  PubMed  CAS  Google Scholar 

  37. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A. 2007;104(16):6511–6518

    Article  PubMed  CAS  Google Scholar 

  38. Sun LP, Seemann J, Goldstein JL, Brown MS. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci U S A. 2007;104(16):6519–6526

    Article  PubMed  CAS  Google Scholar 

  39. Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol. 2006;45(5):717–724

    Article  PubMed  CAS  Google Scholar 

  40. Kohjima M, Higuchi N, Kato M, et al SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med. 2008;21(4):507–511

    PubMed  CAS  Google Scholar 

  41. Lee JH, Zhou J, Xie W. PXR and LXR in hepatic steatosis: a new dog and an old dog with new tricks. Mol Pharm. 2008;5(1):60–66

    Article  PubMed  CAS  Google Scholar 

  42. Porstmann T, Griffiths B, Chung YL, et al PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005;24(43):6465–6481

    PubMed  CAS  Google Scholar 

  43. Dentin R, Benhamed F, Hainault I, et al Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–2570

    Article  PubMed  CAS  Google Scholar 

  44. Dentin R, Denechaud PD, Benhamed F, et al Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP. J Nutr. 2006;136(5):1145–1149

    PubMed  CAS  Google Scholar 

  45. Oyadomari S, Harding HP, Zhang Y, et al Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 2008;7(6):520–532

    Article  PubMed  CAS  Google Scholar 

  46. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320:1492–1496

    Article  PubMed  CAS  Google Scholar 

  47. Salas M, Tuchweber B, Kourounakis P. Liver ultrastructure during acute stress. Pathol Res Pract. 1980;167(2–4):217–233.

    PubMed  CAS  Google Scholar 

  48. Salas M, Tuchweber B, Kourounakis P, Selye H. Temperature-dependence of stress-induced hepatic autophagy. Experientia. 1977;33(5):612–614

    Article  PubMed  CAS  Google Scholar 

  49. Gorczynska E, Wegrzynowicz R. Structural and functional changes in organelles of liver cells in rats exposed to magnetic fields. Environ Res. 1991;55(2):188–198

    Article  PubMed  CAS  Google Scholar 

  50. Ji C. Dissection of endoplasmic reticulum stress signaling in alcoholic andnon-alcoholic liver injury. J Gastroenterol Hepatol. 2008;23(Suppl 1):S16–S24

    Article  CAS  Google Scholar 

  51. Mantena SK, King AL, Andringa KK, et al Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med. 2008;44(7):1259–1272

    Article  PubMed  CAS  Google Scholar 

  52. Mello T, Ceni E, Surrenti C, Galli A. Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol Aspects Med. 2008;29(1–2):17–21

    Article  PubMed  CAS  Google Scholar 

  53. Meier P, Seitz HK. Age, alcohol metabolism and liver disease. Curr Opin Clin Nutr Metab Care. 2008;11(1):21–26

    Article  PubMed  CAS  Google Scholar 

  54. Zakhari S, Li TK. Determinants of alcohol use and abuse: impact of quantity and frequency patterns on liver disease. Hepatology. 2007;46(6):2032–2039

    Article  PubMed  CAS  Google Scholar 

  55. Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology. 2003;124(5):1488–1499

    Article  PubMed  CAS  Google Scholar 

  56. Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol. 2004;10(12):1699–1708

    PubMed  CAS  Google Scholar 

  57. Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology. 2004;40(2):442–451

    Article  PubMed  CAS  Google Scholar 

  58. Ji C, Mehrian-Shai R, Chan C, et al Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res. 2005;29(8):1496–1503

    Article  PubMed  CAS  Google Scholar 

  59. Esfandiari F, Villanueva JA, Wong DH, et al Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G54–G63

    Article  CAS  Google Scholar 

  60. He L, Marecki JC, Serrero G, Simmen FA, Ronis MJ, Badger TM. Dose-dependent effects of alcohol on insulin signaling: partial explanation for biphasic alcohol impact on human health. Mol Endocrinol. 2007;21(10):2541–2550

    Article  PubMed  CAS  Google Scholar 

  61. Tazi KA, Bièche I, Paradis V, et al In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats. J Hepatol. 2007;46(6): 1075–1088

    Article  PubMed  CAS  Google Scholar 

  62. Järveläinen HA, Oinonen T, Lindros KO. Alcohol-induced expression of the CD14 endotoxin receptor protein in rat Kupffer cells. Alcohol Clin Exp Res. 1997;21(8): 1547–1551

    Article  PubMed  Google Scholar 

  63. Su GL, Rahemtulla A, Thomas P, et al CD14 and lipopolysaccharide binding protein expression in a rat model of alcoholic liver disease. Am J Pathol. 1998;152(3):841–849

    PubMed  CAS  Google Scholar 

  64. Seth D, Leo MA, McGuinness PH, et al Gene expression profiling of alcoholic liver disease in the baboon (Papiohamadryas) and human liver. Am J Pathol. 2003;163 (6):2303–2317

    PubMed  CAS  Google Scholar 

  65. Hamelet J, Demuth K, Paul JL, et al Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol. 2007;46(1):151–159

    Article  PubMed  CAS  Google Scholar 

  66. Watanabe M, Osada J, Aratani Y, et al Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e) inemia. Proc Natl Acad Sci U S A. 1995;92(5): 1585–1589

    Article  PubMed  CAS  Google Scholar 

  67. Chen Z, Karaplis AC, Ackerman SL, et al Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001;10(5):433–443

    Article  PubMed  CAS  Google Scholar 

  68. Werstuck GH, Lentz SR, Dayal S, et al Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001;107(10):1263–1273

    Article  PubMed  CAS  Google Scholar 

  69. Kokame K, Agarwala KL, Kato H, Miyata T. Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem. 2000;275(42):32846–32853

    Article  PubMed  CAS  Google Scholar 

  70. Dickhout JG, Sood SK, Austin RC. Role of endoplasmic reticulum calcium disequilibria in the mechanism of homocysteine-induced ER stress. Antioxid Redox Signal. 2007; 9(11):1863–1873

    Article  PubMed  CAS  Google Scholar 

  71. Perła-Kaján J, Stanger O, Luczak M, et al Immunohis­tochemical detection of N-homocysteinylated proteins in humans and mice. Biomed Pharmacother. 2008;62(7): 473–479

    Article  PubMed  CAS  Google Scholar 

  72. Jakubowski H. The molecular basis of homocysteine thiolactone-mediated vascular disease. Clin Chem Lab Med. 2007;45(12):1704–1716

    Article  PubMed  CAS  Google Scholar 

  73. Perła-Kaján J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007;32(4):561–572

    Article  PubMed  CAS  Google Scholar 

  74. Mato JM, Lu SC. Homocysteine, the bad thiol. Hepatology. 2005;41(5):9

    Article  CAS  Google Scholar 

  75. Ji C, Shinohara M, Vance D, et al Effect of transgenic extrahepatic expression of betaine-homocysteine methyltransferase on alcohol or homocysteine-induced fatty liver. Alcohol Clin Exp Res. 2008;32(6):1049–1058

    Article  PubMed  CAS  Google Scholar 

  76. Finkelstein JD. Inborn errors of sulfur-containing amino acid metabolism. J Nutr. 2006;136(6 Suppl):1750S–1754S

    PubMed  CAS  Google Scholar 

  77. Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000; 26(3):219–225

    Article  PubMed  CAS  Google Scholar 

  78. Finkelstein JD. Methionine metabolism in liver diseases. Am J Clin Nutr. 2003;77(5):1094–1095

    PubMed  CAS  Google Scholar 

  79. Finkelstein JD. Homocysteine: a history in progress. Nutr Rev. 2000;58(7):193–204

    Article  PubMed  CAS  Google Scholar 

  80. Barak AJ, Beckenhauer HC, Tuma DJ. Betaine, ethanol, and the liver: a review. Alcohol. 1996;13(4):395–398

    Article  PubMed  CAS  Google Scholar 

  81. Kenyon SH, Nicolaou A, Gibbons WA. The effect of ethanol and its metabolites upon methionine synthase activity in vitro. Alcohol. 1998;15(4):305–309

    Article  PubMed  CAS  Google Scholar 

  82. Ji C, Shinohara M, Kuhlenkamp J, et al Mechanisms of protection by the betaine-homocysteine methyltransferase/betaine system in HepG2 cells and primary mouse hepatocytes. Hepatology. 2007;46(5):1586–1596

    Article  PubMed  CAS  Google Scholar 

  83. Kharbanda KK, Mailliard ME, Baldwin CR, et al Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. J Hepatol. 2007;46(2):314–321

    Article  PubMed  CAS  Google Scholar 

  84. Arya R, Mallik M, Lakhotia SC. Heat shock genes-integrating cell survival and death. J Biosci. 2007;32(3):595–610

    Article  PubMed  CAS  Google Scholar 

  85. Lanneau D, Brunet M, Frisan E, et al Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med. 2008;12(3):743

    Article  PubMed  CAS  Google Scholar 

  86. MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta. 2007;1772(5):509

    PubMed  CAS  Google Scholar 

  87. Samali A, Cai J, Zhivotovsky B, et al Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J. 1999; 18(8):2040–2048

    Article  PubMed  CAS  Google Scholar 

  88. Johnson BJ, Le TT, Dobbin CA, et al Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem. 2005;280(6):4037–4047

    Article  PubMed  CAS  Google Scholar 

  89. Lluis JM, Colell A, García-Ruiz C, et al Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology. 2003;124(3):708–724

    Article  PubMed  CAS  Google Scholar 

  90. Marí M, Colell A, Morales A, et al Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology. 2008;134(5):1507–1520

    Article  PubMed  CAS  Google Scholar 

  91. Marí M, Caballero F, Colell A, et al Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185–198

    Article  PubMed  CAS  Google Scholar 

  92. Liu Z, Butow RA. Mitochondrial retrograde signaling. Annu Rev Genet. 2006;40:159–185

    Article  PubMed  CAS  Google Scholar 

  93. Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006;147(2): 943–951

    Article  PubMed  CAS  Google Scholar 

  94. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118(1):316–332

    Article  PubMed  CAS  Google Scholar 

  95. Borradaile NM, Han X, Harp JD, et al Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 2006;47(12):2726–2737

    Article  PubMed  CAS  Google Scholar 

  96. Flowers MT, Keller MP, Choi Y, et al Liver gene expression analysis reveals endoplasmic reticulum stress and metabolic dysfunction in SCD1-deficient mice fed a very low-fat diet. Physiol Genomics. 2008;33(3):361–372

    Article  PubMed  CAS  Google Scholar 

  97. Zeng L, Lu M, Mori K, et al ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 2004;23(4):950

    Article  PubMed  CAS  Google Scholar 

  98. Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood). 2007;232(5): 614–621

    CAS  Google Scholar 

  99. Yang L, Jhaveri R, Huang J, et al Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Invest. 2007;87(9): 927–937

    Article  PubMed  CAS  Google Scholar 

  100. Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science. 2003;300(5625):1574–1577

    Article  PubMed  CAS  Google Scholar 

  101. Ding J, Kato S, Du K. PI3K activates negative and positive signals to regulate TRB3 expression in hepatic cells. Exp Cell Res. 2008;314(7):1566–1574

    Article  PubMed  CAS  Google Scholar 

  102. Ozcan U, Cao Q, Yilmaz E, et al Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–461

    Article  PubMed  CAS  Google Scholar 

  103. Yoshiuchi K, Kaneto H, Matsuoka TA, et al Direct monitoring of in vivo ER stress during the development of insulin resistance with ER stress-activated indicator transgenic mice. Biochem Biophys Res Commun. 2008;366(2): 545–550

    Article  PubMed  CAS  Google Scholar 

  104. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA. Involvement of oxidative stress and the JNK pathway in glucose toxicity. Rev Diabet Stud. 2004;1(4): 165–174

    Article  PubMed  Google Scholar 

  105. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–867

    Article  PubMed  CAS  Google Scholar 

  106. Hirosumi J, Tuncman G, Chang L, et al A central role for JNK in obesity and insulin resistance. Nature. 2002;420 (6913):333–336

    Article  PubMed  CAS  Google Scholar 

  107. Tuncman G, Hirosumi J, Solinas G, et al Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2006;103(28):10741–10746

    Article  PubMed  CAS  Google Scholar 

  108. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, et al Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57(9):2438–2444

    Article  PubMed  CAS  Google Scholar 

  109. Wang D, Wei Y, Schmoll D, Maclean KN, Pagliassotti MJ. Endoplasmic reticulum stress increases glucose-6-­phosphatase and glucose cycling in liver cells. Endocri­nology. 2006;147(1):350

    Article  PubMed  CAS  Google Scholar 

  110. Postic C, Dentin R, Denechaud PD, Girard J. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr. 2007;27:179–192

    Article  PubMed  CAS  Google Scholar 

  111. Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, et al Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–2170

    Article  PubMed  CAS  Google Scholar 

  112. Nakatani Y, Kaneto H, Kawamori D, et al Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005;280(1):847–851

    PubMed  CAS  Google Scholar 

  113. Brown CR, Hong-Brown LQ, Biwersi J, Verkman AS, Welch WJ. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones. 1996; 1(2):117–125

    Article  PubMed  CAS  Google Scholar 

  114. Hansen PA, Waheed A, Corbett JA. Chemically chaperoning the actions of insulin. Trends Endocrinol Metab. 2007; 18(1):1–3

    Article  PubMed  CAS  Google Scholar 

  115. Ozcan U, Yilmaz E, Ozcan L, et al Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313 (5790): 1137–1140

    Article  PubMed  CAS  Google Scholar 

  116. Sreejayan N, Dong F, Kandadi MR, Yang X, Ren J. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice. Obesity (Silver Spring). 2008;16(6):1331

    Article  CAS  Google Scholar 

  117. Sheikh MY, Choi J, Qadri I, Friedman JE, Sanyal AJ. Hepatitis C virus infection: molecular pathways to metabolic syndrome. Hepatology. 2008;47(6):2127–2133

    Article  PubMed  CAS  Google Scholar 

  118. Tardif KD, Waris G, Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol. 2005;13(4): 159–163

    Article  PubMed  CAS  Google Scholar 

  119. Tardif KD, Mori K, Kaufman RJ, Siddiqui A. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol Chem. 2004;279(17): 17158–17164

    Article  PubMed  CAS  Google Scholar 

  120. Zheng Y, Gao B, Ye L, et al Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response. J Microbiol. 2005;43(6):529–536

    PubMed  CAS  Google Scholar 

  121. Fang C, Yi Z, Liu F, Lan S, Wang J, Lu H, et al Proteome analysis of human liver carcinoma Huh7 cells harboring hepatitis C virus subgenomic replicon. Proteomics. 2006; 6(2):519–527

    Article  PubMed  CAS  Google Scholar 

  122. Tardif KD, Siddiqui A. Cell surface expression of major histocompatibility complex class I molecules is reduced in hepatitis C virus subgenomic replicon-expressing cells. J Virol. 2003;77(21):11644–11650

    Article  PubMed  CAS  Google Scholar 

  123. Fournillier A, Wychowski C, Boucreux D, et al Induction of hepatitis C virus E1 envelope protein-specific immune response can be enhanced by mutation of N-glycosylation sites. J Virol. 2001;75(24):12088–12097

    Article  PubMed  CAS  Google Scholar 

  124. Benali-Furet N, Chami M, Houel L, et al Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene. 2005;24: 4921–4933

    Article  PubMed  CAS  Google Scholar 

  125. Christen V, Treves S, Duong FH, Heim MH. Activation of endoplasmic reticulum stress response by hepatitis viruses up-regulates protein phosphatase 2A. Hepatology. 2007;46(2):558–565

    Article  PubMed  CAS  Google Scholar 

  126. Tumurbaatar B, Sun Y, Chan T, Sun J. Cre-estrogen receptor-mediated hepatitis C virus structural protein expression in mice. J Virol Methods. 2007;146(1–2):5–13

    Article  PubMed  CAS  Google Scholar 

  127. Sir D, Liang C, Chen WL, Jung JU, Ou JH. Perturbation of autophagic pathway by hepatitis C virus. Autophagy. 2008;4(6):830–831

    PubMed  CAS  Google Scholar 

  128. Grompe M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis. 2001;21(4):563–571

    Article  PubMed  CAS  Google Scholar 

  129. Bergeron A, Jorquera R, Orejuela D, Tanguay R. Involve­ment of endoplasmic reticulum stress in hereditary tyrosinemia type I. J Biol Chem. 2006;281:5329–5334

    Article  PubMed  CAS  Google Scholar 

  130. Hidvegi T, Schmidt B, Hale P, Perlmutter D. Accumulation of mutant αl-antitrypsin Z in the endoplasmic reticulum activated caspases -4 and -12 NFκB, and BAP31 but not the unfolded protein response. J Biol Chem. 2005;280: 39002–39015

    Article  PubMed  CAS  Google Scholar 

  131. Papp E, Szaraz P, Korcsmaros T, Csermely P. Changes of endoplasmic reticulum chaperone complexes, redox state, and impaired protein disulfide reductase activity in misfolding alpha1-antitrypsin transgenic mice. FASEB J. 2006; 20(7):1018–1020

    Article  PubMed  CAS  Google Scholar 

  132. Mencin A, Seki E, Osawa Y, Kodama Y, Minicis SD, Knowles M, et al Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology. 2007;46(5):1443–1452

    Article  PubMed  CAS  Google Scholar 

  133. Granell S, Baldini G, Mohammad S, et al Sequestration of Mutated {alpha}1-Antitrypsin into Inclusion Bodies Is a Cell-protective Mechanism to Maintain Endoplasmic Reticulum Function. Mol Biol Cell. 2008;19(2): 572–586

    Article  PubMed  CAS  Google Scholar 

  134. Nagy G, Kardon T, Wunderlich L, et al Acetaminophen induces ER dependent signaling in mouse liver. Arch Biochem Biophys. 2007;459(2):273–279

    Article  PubMed  CAS  Google Scholar 

  135. Auman JT, Chou J, Gerrish K, et al Identification of genes implicated in methapyrilene-induced hepatotoxicity by comparing differential gene expression in target and nontarget tissue. Environ Health Perspect. 2007;115(4):572–578

    Article  PubMed  CAS  Google Scholar 

  136. Craig A, Sidaway J, Holmes E, et al Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res. 2006;5(7):1586–1601

    Article  PubMed  CAS  Google Scholar 

  137. Zhou H, Gurley E, Jarujaron S, et al HIY protease inhibitors activate the unfolded protein response and disrupt lipid metabolism in primary hepatocytes. Am J Physiol. 2006;291:G1071–G1080

    Google Scholar 

  138. Gupta AK, Li B, Cerniglia GJ, et al The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting proteasomal activity and inducing the unfolded protein response. Neoplasia. 2007;9(4):271–278

    Article  PubMed  CAS  Google Scholar 

  139. Zhou H, Jarujaron S, Gurley EC, et al HIV protease inhibitors increase TNF-alpha and IL-6 expression in macrophages: involvement of the RNA-binding protein HuR. Atherosclerosis. 2007;195(1):e134–e143

    Article  CAS  Google Scholar 

  140. Sakon M, Ariyoshi H, Umeshita K, Monden M. Ischemia-reperfusion of the liver with special reference to calcium-dependent mechanisms. Surg Today. 2002;32:1–12

    Article  PubMed  CAS  Google Scholar 

  141. Bailly-Maitre B, Fondevila C, Kaldas F, et al Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci. 2006;103:2809–2814

    Article  PubMed  CAS  Google Scholar 

  142. Chae H, Kirn H, Xu C, et al BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell. 2004;15:355–366

    Article  PubMed  CAS  Google Scholar 

  143. Reimers K, Choi CY, Bucan V, Vogt PM. The Bax Inhibitor-1 (BI-1) family in apoptosis and tumorigenesis. Curr Mol Med. 2008;8(2):148–156

    Article  PubMed  CAS  Google Scholar 

  144. Vilatoba M, Eckstein C, Bilbao G, et al Sodium 4-­phenybutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery. 2005;138:342–351

    Article  PubMed  Google Scholar 

  145. Bernstein H, Payne CM, Bernstein C, Schneider J, et al Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 1999;108(1):37–46

    Article  PubMed  CAS  Google Scholar 

  146. Tsuchiya S, Tsuji M, Morio Y, Oguchi K. Involvement of endoplasmic reticulum in glycochenodeoxycholic acid-induced apoptosis in rat hepatocytes. Toxicol Lett. 2006; 166(2):140–149

    Article  PubMed  CAS  Google Scholar 

  147. Iizaka T, Tsuji M, Oyamada H, Morio Y, Oguchi K. Interaction between caspase-8 activation and endoplasmic reticulum stress in glycochenodeoxycholic acid-induced apoptotic HepG2 cells. Toxicology. 2007;241(3):146–156

    Article  PubMed  CAS  Google Scholar 

  148. Tamaki N, Hatano E, Taura K, Tada M, et al CHOP deficiency attenuates cholestasis-induced liver fibrosis by reduction of hepatocyte injury. Am J Physiol Gastrointest Liver Physiol. 2008;294(2):G498–G505

    Article  CAS  Google Scholar 

  149. Bochkis IM, Rubins NE, White P, Furth EE, et al Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med. 2008;14(8):828–836

    Article  PubMed  CAS  Google Scholar 

  150. Margittai E, Bánhegyi G, Kiss A, Nagy G, Mandl J, Schaff Z, et al Scurvy leads to endoplasmic reticulum stress and apoptosis in the liver of Guinea pigs. J Nutr. 2005; 135(11): 2530–2534

    PubMed  CAS  Google Scholar 

  151. Hanada S, Harada M, Kumemura H, et al Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. J Hepatol. 2007;47 (1):93–102

    Article  PubMed  CAS  Google Scholar 

  152. Hiramatsu N, Kasai A, Du S, et al Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice. FEBS Lett. 2007;581(10):2055–2059

    Article  PubMed  CAS  Google Scholar 

  153. Cairo G, Recalcati S. Iron-regulatory proteins: molecular biology and pathophysiological implications. Expert Rev Mol Med. 2007;9(33):1–13

    Article  PubMed  Google Scholar 

  154. Dudley RE, Svoboda DJ, Klaassen CD. Time course of cadmium-induced ultrastructural changes in rat liver. Tox­icol Appl Pharmacol. 1984;76(1):150–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 AA014428, R01 AA018612, P50 AA11999, and P30 DK48522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ji, C., Kaplowitz, N. (2010). ER Stress Signaling in Hepatic Injury. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics