Skip to main content

JNKs in liver diseases

  • Chapter
  • First Online:
  • 1573 Accesses

Abstract

c-Jun NH2-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family. Like other MAPKs, JNKs are conserved throughout eukaryotic evolution, activated via three-tiered phosphorylation cascades, and involved in a wide range of cellular responses to stress. JNKs have been shown to play important roles in proliferation, cell death, inflammation and cell metabolism. These seemingly unrelated responses are part of an overall stress response program that ensures proper repair of cells sustaining minor damage, elimination of cells sustaining irreversible structural or genetic damage, as well as their proper replacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gupta S, Barrett T, Whitmarsh AJ et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    PubMed  CAS  Google Scholar 

  2. Hibi M, Lin A, Smeal T et al (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148

    Article  PubMed  CAS  Google Scholar 

  3. Mohit AA, Martin JH, Miller CA (1995) p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14:67–78

    Article  PubMed  CAS  Google Scholar 

  4. Kuan CY, Yang DD, Samanta Roy DR et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676

    Article  PubMed  CAS  Google Scholar 

  5. Sabapathy K, Jochum W, Hochedlinger K et al (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89: 115–124

    Article  PubMed  CAS  Google Scholar 

  6. Sato S, Sanjo H, Tsujimura T et al (2006) TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int Immunol 18: 1405–1411

    Article  PubMed  CAS  Google Scholar 

  7. Shim JH, Xiao C, Paschal AE et al (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    Article  PubMed  CAS  Google Scholar 

  8. Wan YY, Chi H, Xie M et al (2006) The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 7:851–858

    Article  PubMed  CAS  Google Scholar 

  9. Tobiume K, Matsuzawa A, Takahashi T et al (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228

    Article  PubMed  CAS  Google Scholar 

  10. Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  PubMed  CAS  Google Scholar 

  11. Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  PubMed  CAS  Google Scholar 

  12. Tournier C, Dong C, Turner TK et al (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15:1419–1426

    Article  PubMed  CAS  Google Scholar 

  13. Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases–regulating the immune response. Nat Rev Immunol 7: 202–212

    Article  PubMed  CAS  Google Scholar 

  14. Kamata H, Honda S, Maeda S et al (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  PubMed  CAS  Google Scholar 

  15. Hamdi M, Kool J, Cornelissen-Steijger P et al (2005) DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene 24:7135–7144

    Article  PubMed  CAS  Google Scholar 

  16. Heinrichsdorff J, Luedde T, Perdiguero E, Nebreda AR, Pasparakis M. (2008) p38 alpha MAPK inhibits JNK activation and collaborates with IkappaB kinase 2 to prevent endotoxin-induced liver failure. EMBO Rep 9:1048-54

    Google Scholar 

  17. Hui L, Bakiri L, Mairhorfer A et al (2007) p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 39:741–749

    Article  PubMed  CAS  Google Scholar 

  18. Sakurai T, He G, Matsuzawa A et al (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165

    Article  PubMed  CAS  Google Scholar 

  19. Mechta-Grigoriou F, Gerald D, Yaniv M (2001) The mammalian Jun proteins: redundancy and specificity. Oncogene 20:2378–2389

    Article  PubMed  CAS  Google Scholar 

  20. Smeal T, Binetruy B, Mercola DA et al (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496

    Article  PubMed  CAS  Google Scholar 

  21. Angel P, Hattori K, Smeal T et al (1988) The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55:875–885

    Article  PubMed  CAS  Google Scholar 

  22. Minden A, Karin M (1997) Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta 1333:F85–F104

    Google Scholar 

  23. Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095

    Article  PubMed  CAS  Google Scholar 

  24. Sabapathy K, Hochedlinger K, Nam SY et al (2004) Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15:713–725

    Article  PubMed  CAS  Google Scholar 

  25. Jaeschke A, Karasarides M, Ventura JJ et al (2006) JNK2 is a positive regulator of the cJun transcription factor. Mol Cell 23:899–911

    Article  PubMed  CAS  Google Scholar 

  26. Gao M, Labuda T, Xia Y et al (2004) Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306:271–275

    Article  PubMed  CAS  Google Scholar 

  27. Chang L, Kamata H, Solinas G et al (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    Article  PubMed  CAS  Google Scholar 

  28. Chen N, She QB, Bode AM et al (2002) Differential gene expression profiles of Jnk1- and Jnk2-deficient murine fibroblast cells. Cancer Res 62:1300–1304

    PubMed  CAS  Google Scholar 

  29. Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497

    Article  PubMed  CAS  Google Scholar 

  30. Ventura JJ, Hubner A, Zhang C et al (2006) Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 21:701–710

    Article  PubMed  CAS  Google Scholar 

  31. Lamb JA, Ventura JJ, Hess P et al (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11:1479–1489

    Article  PubMed  CAS  Google Scholar 

  32. Hasselblatt P, Rath M, Komnenovic V et al (2007) Hepatocyte survival in acute hepatitis is due to c-Jun/AP-1-dependent expression of inducible nitric oxide synthase. Proc Natl Acad Sci U S A 104:17105–17110

    Article  PubMed  Google Scholar 

  33. Deng X, Xiao L, Lang W et al (2001) Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 276: 23681–23688

    Article  PubMed  CAS  Google Scholar 

  34. Tang F, Tang G, Xiang J et al (2002) The absence of NF-kappaB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 22:8571–8579

    Article  PubMed  CAS  Google Scholar 

  35. Tang G, Minemoto Y, Dibling B et al (2001) Inhibition of JNK activation through NF-kappaB target genes. Nature 414:313–317

    Article  PubMed  CAS  Google Scholar 

  36. Inoshita S, Takeda K, Hatai T et al (2002) Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem 277:43730–43734

    Article  PubMed  CAS  Google Scholar 

  37. Kharbanda S, Saxena S, Yoshida K et al (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275:322–327

    Article  PubMed  CAS  Google Scholar 

  38. Tsuruta F, Sunayama J, Mori Y et al (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14–3-3 proteins. EMBO J 23:1889–1899

    Article  PubMed  CAS  Google Scholar 

  39. Deng Y, Ren X, Yang L et al (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61–70

    Article  PubMed  CAS  Google Scholar 

  40. Lu C, Zhu F, Cho YY et al (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23:121–132

    Article  PubMed  CAS  Google Scholar 

  41. Noguchi K, Kitanaka C, Yamana H et al (1999) Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 274:32580–32587

    Article  PubMed  CAS  Google Scholar 

  42. Schreiber M, Kolbus A, Piu F et al (1999) Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13:607–619

    Article  PubMed  CAS  Google Scholar 

  43. Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326–329

    Article  PubMed  CAS  Google Scholar 

  44. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140

    Article  PubMed  CAS  Google Scholar 

  45. Ishizuka T, Terada N, Gerwins P et al (1997) Mast cell tumor necrosis factor alpha production is regulated by MEK kinases. Proc Natl Acad Sci U S A 94:6358–6363

    Article  PubMed  CAS  Google Scholar 

  46. Bennett BL, Sasaki DT, Murray BW et al (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98:13681–13686

    Article  PubMed  CAS  Google Scholar 

  47. Han Z, Boyle DL, Chang L et al (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81

    PubMed  CAS  Google Scholar 

  48. Schwabe RF, Bataller R, Brenner DA (2003) Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 285:G949–G958

    Google Scholar 

  49. Marra F, Delogu W, Petrai I et al (2004) Differential requirement of members of the MAPK family for CCL2 expression by hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G18–G26

    Article  Google Scholar 

  50. Dong C, Yang DD, Tournier C et al (2000) JNK is required for effector T-cell function but not for T-cell activation. Nature 405:91–94

    Article  PubMed  CAS  Google Scholar 

  51. Liu H, Lo CR, Czaja MJ (2002) NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology 35: 772–778

    Article  PubMed  CAS  Google Scholar 

  52. Schwabe RF, Uchinami H, Qian T et al (2004) Differential requirement for c-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes. FASEB J 18: 720–722

    PubMed  CAS  Google Scholar 

  53. Henderson NC, Pollock KJ, Frew J et al (2007) Critical role of c-jun (NH2) terminal kinase in paracetamol-induced acute liver failure. Gut 56:982–990

    Article  PubMed  CAS  Google Scholar 

  54. Maeda S, Chang L, Li ZW et al (2003) IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity 19:725–737

    Article  PubMed  CAS  Google Scholar 

  55. Wang Y, Singh R, Lefkowitch JH et al (2006) Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. J Biol Chem 281:15258–15267

    Article  PubMed  CAS  Google Scholar 

  56. Ni HM, Chen X, Ding WX et al (2008) Differential roles of JNK in ConA/GalN and ConA-induced liver injury in mice. Am J Pathol 173:962–972

    Article  PubMed  CAS  Google Scholar 

  57. Das M, Sabio G, Jiang F et al (2009) Induction of hepatitis by JNK-mediated expression of TNF-alpha. Cell 136:249–260

    Article  PubMed  CAS  Google Scholar 

  58. Lee WM (2003) Acute liver failure in the United States. Semin Liver Dis 23:217–226

    Article  PubMed  CAS  Google Scholar 

  59. Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41

    Article  PubMed  CAS  Google Scholar 

  60. Gunawan BK, Liu ZX, Han D et al (2006) c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131:165–178

    Article  PubMed  CAS  Google Scholar 

  61. Nakagawa H, Maeda S, Hikiba Y et al (2008) Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-­induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 135:1311–1321

    Article  PubMed  CAS  Google Scholar 

  62. Hanawa N, Shinohara M, Saberi B et al (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565–13577

    Article  PubMed  CAS  Google Scholar 

  63. Kon K, Kim JS, Jaeschke H et al (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40: 1170–1179

    Article  PubMed  CAS  Google Scholar 

  64. Beales D, McLean AE (1996) Protection in the late stages of paracetamol-induced liver cell injury with fructose, cyslosporin A and trifluoperazine. Toxicology 107:201–208

    Article  PubMed  CAS  Google Scholar 

  65. Rudiger HA, Clavien PA (2002) Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology 122:202–210

    Article  PubMed  CAS  Google Scholar 

  66. Colletti LM, Remick DG, Burtch GD et al (1990) Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest 85:1936–1943

    Article  PubMed  CAS  Google Scholar 

  67. Bradham CA, Stachlewitz RF, Gao W et al (1997) Reper­fusion after liver transplantation in rats differentially activates the mitogen-activated protein kinases. Hepatology 25: 1128–1135

    Article  PubMed  CAS  Google Scholar 

  68. Zwacka RM, Zhang Y, Zhou W et al (1998) Ischemia/reperfusion injury in the liver of BALB/c mice activates AP-1 and nuclear factor kappaB independently of IkappaB degradation. Hepatology 28:1022–1030

    Article  PubMed  CAS  Google Scholar 

  69. Lehmann TG, Wheeler MD, Schwabe RF et al (2000) Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat. Hepatology 32:1255–1264

    Article  PubMed  CAS  Google Scholar 

  70. Uehara T, Bennett B, Sakata ST et al (2005) JNK mediates hepatic ischemia reperfusion injury. J Hepatol 42:850–859

    Article  PubMed  CAS  Google Scholar 

  71. Uehara T, Xi Peng X, Bennett B et al (2004) c-Jun N-terminal kinase mediates hepatic injury after rat liver transplantation. Transplantation 78:324–332

    Article  PubMed  CAS  Google Scholar 

  72. Theruvath TP, Snoddy MC, Zhong Z et al (2008) Mito­chondrial permeability transition in liver ischemia and reperfusion: role of c-Jun N-terminal kinase 2. Transplantation 85:1500–1504

    Article  PubMed  CAS  Google Scholar 

  73. Yoshida K, Matsuzaki K, Mori S et al (2005) Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 166:1029–1039

    PubMed  CAS  Google Scholar 

  74. Bataller R, Schwabe RF, Choi YH et al (2003) NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 112: 1383–1394

    PubMed  CAS  Google Scholar 

  75. Schnabl B, Bradham CA, Bennett BL et al (2001) TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology 34:953–963

    Article  PubMed  CAS  Google Scholar 

  76. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847

    Article  PubMed  CAS  Google Scholar 

  77. Westwick JK, Weitzel C, Leffert HL et al (1995) Activation of Jun kinase is an early event in hepatic regeneration. J Clin Invest 95:803–810

    Article  PubMed  CAS  Google Scholar 

  78. Schwabe RF, Bradham CA, Uehara T et al (2003) c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology 37:824–832

    Article  PubMed  CAS  Google Scholar 

  79. Behrens A, Sibilia M, David JP et al (2002) Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J 21:1782–1790

    Article  PubMed  CAS  Google Scholar 

  80. Hui L, Zatloukal K, Scheuch H et al (2008) Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 118:3943–3953

    Article  PubMed  CAS  Google Scholar 

  81. Sabapathy K, Wagner EF (2004) JNK2: a negative regulator of cellular proliferation. Cell Cycle 3:1520–1523

    PubMed  CAS  Google Scholar 

  82. Papa S, Zazzeroni F, Fu YX et al (2008) Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118: 1911–1923

    Article  PubMed  CAS  Google Scholar 

  83. Bohmann D, Bos TJ, Admon A et al (1987) Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238:1386–1392

    Article  PubMed  CAS  Google Scholar 

  84. Eferl R, Ricci R, Kenner L et al (2003) Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112:181–192

    Article  PubMed  CAS  Google Scholar 

  85. Sakurai T, Maeda S, Chang L et al (2006) Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci U S A 103:10544–10551

    Article  PubMed  CAS  Google Scholar 

  86. Maeda S, Kamata H, Luo JL et al (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  PubMed  CAS  Google Scholar 

  87. Li Z, Yang S, Lin H et al (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37:343–350

    Article  PubMed  CAS  Google Scholar 

  88. Schattenberg JM, Singh R, Wang Y et al (2006) JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43:163–172

    Article  PubMed  CAS  Google Scholar 

  89. Singh R, Wang Y, Xiang Y et al (2009) Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49:87–96

    Article  PubMed  CAS  Google Scholar 

  90. Kodama Y, Kisseleva T, Miura K et al (2008) JNK1 in hematopoietic cells mediates progression from diet-induced hepatic steatosis to steatohepatits and liver fibrosis. Hepa­tology 48:366A

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01DK076920 and U54CA126513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schwabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwabe, R. (2010). JNKs in liver diseases. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics