Skip to main content

Hedgehog Configurations in d = 3+1

  • Chapter
  • First Online:
Spectral Methods in Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 777))

  • 1436 Accesses

In this chapter we next extend the approach of Chap. 4 to the case of three spatial dimensions. First we study the coupling of a Higgs doublet to chiral fermions, and then we generalize the background boson fields to form an SU L (2) gauge theory. We will again use a systematic expansion in ħ and 1/N in which the dominant contribution arises from the fermion loop. Our goal is thus to compute the one-fermion loop contribution to the vacuum polarization energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. D’Hoker and E. Farhi, Phys. Lett. B134 (1984) 86.

    ADS  Google Scholar 

  2. E. Farhi, N. Graham, R. L. Jaffe, and H. Weigel, Phys. Lett. B475 (2000) 335.

    ADS  MathSciNet  Google Scholar 

  3. W. Pauli, Meson Theory of Nuclear Forces. Interscience Publishes, Inc., New York, 1946.

    MATH  Google Scholar 

  4. E. Farhi, N. Graham, R. L. Jaffe, and H. Weigel, Nucl. Phys. B630 (2002) 241.

    Article  ADS  Google Scholar 

  5. J. Baacke, Z. Phys. C53 (1992) 402.

    ADS  Google Scholar 

  6. J. Baacke and A. Surig, Z. Phys. C73 (1997) 369.

    Google Scholar 

  7. J. A. Bagger and S. G. Naculich, Phys. Rev. D45 (1992) 1395.

    ADS  Google Scholar 

  8. I. J. R. Aitchison and C. M. Fraser, Phys. Lett. B146 (1984) 63.

    ADS  Google Scholar 

  9. I. J. R. Aitchison and C. M. Fraser, Phys. Rev. D31 (1985) 2605.

    ADS  MathSciNet  Google Scholar 

  10. J. Hartmann, F. Beck, and W. Bentz, Phys. Rev. C50 (1994) 30883.

    Google Scholar 

  11. G. Ripka and S. Kahana, Phys. Rev. D36 (1987) 1233.

    ADS  Google Scholar 

  12. J. A. Bagger and S. G. Naculich, Phys. Rev. Lett. 67 (1991) 2252.

    Article  ADS  Google Scholar 

  13. N. S. Manton, Phys. Rev. D28 (1983) 2019.

    ADS  MathSciNet  Google Scholar 

  14. F. R. Klinkhamer and C. Rupp, J. Math. Phys. 44 (2003) 3619.

    Google Scholar 

  15. F. R. Klinkhamer and N. S. Manton, Phys. Rev. D30 (1984) 2212.

    ADS  Google Scholar 

  16. A. A. Belavin, A. M. Polyakov, A. S. Shvarts, and Y. S. Tyupkin, Phys. Lett. B59 (1975) 85.

    ADS  Google Scholar 

  17. T. Vachaspati, Phys. Rev. Lett. 68 (1992) 1977.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. F. R. Klinkhamer and P. Olesen, Nucl. Phys. B422 (1994) 227.

    Article  ADS  Google Scholar 

  19. B. Kleihaus and J. Kunz, Phys. Lett. B329 (1994) 61.

    ADS  Google Scholar 

  20. F. R. Klinkhamer and J. Weller, Nucl. Phys. B481 (1996) 403.

    Article  ADS  MathSciNet  Google Scholar 

  21. F. R. Klinkhamer, Phys. Lett. B246 (1990) 131.

    ADS  MathSciNet  Google Scholar 

  22. E. Farhi, N. Graham, R. L. Jaffe, V. Khemani, and H. Weigel, Nucl. Phys. B665 (2003) 623.

    Article  ADS  Google Scholar 

  23. J. Boguta and J. Kunz, Phys. Lett. B154 (1985) 407.

    ADS  MathSciNet  Google Scholar 

  24. A. Ringwald, Phys. Lett. B213 (1988) 61.

    ADS  Google Scholar 

  25. G. ’t Hooft, Phys. Rev. D14 (1976) 3432.

    ADS  Google Scholar 

  26. V. A. Rubakov, Nucl. Phys. B256 (1985) 509.

    Article  ADS  Google Scholar 

  27. E. Witten, Phys. Lett. B117 (1982) 324.

    ADS  MathSciNet  Google Scholar 

  28. F. R. Klinkhamer and C. Rupp, Nucl. Phys. B495 (1997) 172.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Graham .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graham, N., Quandt, M., Weigel, H. (2009). Hedgehog Configurations in d = 3+1. In: Spectral Methods in Quantum Field Theory. Lecture Notes in Physics, vol 777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00139-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00139-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00138-3

  • Online ISBN: 978-3-642-00139-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics