Principle and Perspective of Optical Multipoint Methods for Aerodynamic Investigations

  • C. J. Kähler
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 102)


In this article, the most powerful and reliable optical multipoint measurement techniques applied today in fluid mechanics for estimating velocity fields, density gradients, model deformations, temperature, and pressure distributions are outlined and advantages and limitations of the techniques are disscussed. The analysis implies that the methods are well qualified for many scientific and engineering investigations. However, with increasing performance of the measurement and simulation techniques, the man increases the complexity of the scientific questions and expands the range of examination. Thus, the technological progress and the scientific effort must continue to keep up with future needs.


Particle Image Velocimetry Wind Tunnel Interrogation Window Particle Tracking Velocimetry Hough Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tropea, C., Yarin, A.L., Koss, J.F. (eds.): Handbook of Experimental Fluid Mechanics. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Hain, R., Kähler, C.J., Tropea, C.: Comparison of CCD, CMOS and intensified cameras. Exp. Fluids 42, 403–411 (2006)CrossRefGoogle Scholar
  3. 3.
    Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry – A practical Guide, 2nd edn. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Kähler, C.J.: The significance of coherent flow structures for the turbulent mixing in wall-bounded flows, DLR research report DLR-FB-2004-24 (2004),
  5. 5.
    Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Tech. 8, 261–304 (1997)CrossRefGoogle Scholar
  6. 6.
    Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics. Exp. Fluids 33, 736–742 (2002)Google Scholar
  7. 7.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge U. Press, Cambridge (1999)Google Scholar
  8. 8.
    Adrian, R.J.: Statistical properties of particle image velocimetry measurements in turbulent flow. In: Laser Anemometry in Fluid Mechanics III, pp. 115–129. Springer, Heidelberg (1988)Google Scholar
  9. 9.
    Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49, 191–215 (1992)CrossRefGoogle Scholar
  10. 10.
    Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Tech. 8, 1379–1392 (1997)CrossRefGoogle Scholar
  11. 11.
    Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991)CrossRefGoogle Scholar
  12. 12.
    Westerweel, J., Dabiri, D., Gharib, M.: The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp. Fluids 23, 20–28 (1997)CrossRefGoogle Scholar
  13. 13.
    Kähler, C.J., Kompenhans, J.: Fundamentals of Multiple Plane Stereo PIV. Exp. Fluids Supplement 29, S70–S77 (2000)Google Scholar
  14. 14.
    Huang, H.T., Fiedler, H.E., Wang, J.J.: Limitation and improvement of PIV. Exp. Fluids 15, 168–174, 263–273 (1993)Google Scholar
  15. 15.
    Scarano, F.: Iterative image deformation methods in PIV. Meas. Sci. Technol. 13, R1–R19 (2002)CrossRefGoogle Scholar
  16. 16.
    Stanislas, M., Okamoto, K., Kähler, C.J.: Main results of the first international PIV Challenge. Meas. Sci. Technol. 14, R63–R89 (2003)CrossRefGoogle Scholar
  17. 17.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J.: Main results of the second international PIV Challenge. Exp. Fluids 39, 170–191 (2005)CrossRefGoogle Scholar
  18. 18.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J., Scarano, F.: Main results of the third international PIV Challenge. Exp. Fluids (2008) (online)Google Scholar
  19. 19.
    Hain, R., Kähler, C.J.: Fundamentals of Multiframe Particle Image Velocimetry (PIV). Exp. Fluids 42, 575–587 (2007)CrossRefGoogle Scholar
  20. 20.
    Hain, R., Kähler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at low Reynolds-number airfoils. J. Fluid Mech. (submitted, 2008)Google Scholar
  21. 21.
    Willert, C.E.: Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Tech. 8, 1465–1479 (1997)CrossRefGoogle Scholar
  22. 22.
    Prasad, A.K.: Stereoscoptc particle image velocimetry. Exp. Fluids 29, 103–116 (2000)CrossRefGoogle Scholar
  23. 23.
    Lawson, N.J., Wu, J.: Three dimensional particle image velocimetry: error analysis of stereoscopic particle techniques. Meas. Sci. Tech. 8, 894–900 (1997)CrossRefGoogle Scholar
  24. 24.
    Soloff, S.M., Adrian, R.J., Ziu, Z.-C.: Distortion compensation for generalized of stereoscopic particle image velocimetry. Meas. Sci. Tech. 8, 1441–1454 (1997)CrossRefGoogle Scholar
  25. 25.
    Willert, C.: Assessment of camera models for use in planar velocimetry calibration. Exp. Fluids 41, 135–143 (2006)CrossRefGoogle Scholar
  26. 26.
    Kähler, C.J., Adrian, R.J., Willert, C.E.: Turbulent boundary layer investigations with conventional and stereoscopic particle image velocimetry. In: 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 13–16, paper 11-1 (1998)Google Scholar
  27. 27.
    Wieneke, B.: Volume Self-Calibration for Stereo-PIV and Tomographic-PIV. In: 7th International Symposium on Particle Image Velocimetry, Rome, Italy, September 11–14 (2007)Google Scholar
  28. 28.
    Kähler, C.J.: Multiplane stereo PIV – Recording and evaluation methods. In: Proc. EUROMECH 411, Rouen, France, May 29–31 (2000)Google Scholar
  29. 29.
    Kähler, C.J.: Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp. Fluids 36, 114–130 (2004)CrossRefGoogle Scholar
  30. 30.
    Urushihara, T., Meinhart, C.D., Adrian, R.J.: Investigation of the logarithmic layer in pipe flow using particle image velocimetry. In: Near-Wall Turbulent Flows, pp. 336–433. Elsevier, Amsterdam (1993)Google Scholar
  31. 31.
    Dieterle, L., Weichert, R.: Particle Image Velocimetry applied to microstructures in turbulent flows. In: Rodi, Bergels (eds.) Eng. Turb. Mod. and Exp., vol. 3, pp. 391–400. Elsevier, Amsterdam (1996)Google Scholar
  32. 32.
    Lindken, R., Di Silvestro, F., Westerweel, J., Nieuwstadt, F.T.M.: Turbulence measurements with μ-PIV in large-scale pipe flows. In: Proc. of the 11th Int. Symp. on Appl. of Laser Techn. to Fluid Mech., Lisbon, Portugal, July 8–11, paper 12-1 (2002)Google Scholar
  33. 33.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41, 327–341 (2006)CrossRefGoogle Scholar
  34. 34.
    Kähler, C.J., Scholz, U.: Transonic jet analysis using long-distance Micro-PIV. In: 12th International Symposium on Flow Visualization – ISFV 12, Göttingen, Germany, September 10–14 (2006)Google Scholar
  35. 35.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV algorithm for estimating timeaveraged velocity fields. J. Fluids Eng. 122, 285–289 (1999)CrossRefGoogle Scholar
  36. 36.
    Westerweel, J., Geelhoed, P., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37, 375–384 (2004)CrossRefGoogle Scholar
  37. 37.
    Billy, F., David, L., Pineau, G.: Single pixel resolution correlation applied to unsteady flow measurements. Meas. Sci. Technol. 15, 1039–1045 (2004)CrossRefGoogle Scholar
  38. 38.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006)CrossRefGoogle Scholar
  39. 39.
    Hain, R., Kähler, C.J., Michaelis, D.: Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate. Exp. Fluids 45, 715–724 (2008)CrossRefGoogle Scholar
  40. 40.
    Meier, G.E.A.: Hintergrundschlierenverfahren. Deutsche Patentanmeldung, DE 199 42 856 A1 (1999)Google Scholar
  41. 41.
    Meier, G.E.A.: Computerized background-oriented schlieren. Exp. Fluids 3, 181 (2002)Google Scholar
  42. 42.
    Richard, H., Raffel, M.: Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 12, 1576–1585 (2001)CrossRefGoogle Scholar
  43. 43.
    Kähler, C.J., Scholz, U.: Investigation of laser-induced flow structures with timeresolved PIV, BOS and IR technology. In: 5th International Symposium on Particle Image Velocimety, Busan, Korea, September 22–24 (2003)Google Scholar
  44. 44.
    Kähler, C.J., Dreyer, M.: Dynamic 3D stereoscopic PIV and schlieren investigation of turbulent flow structures generated by laser induced plasma. In: 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 12–15 (2004)Google Scholar
  45. 45.
    Ruhnau, P., Kohlberger, T., Nobach, H., Schnorr, C.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38, 21–32 (2005)CrossRefGoogle Scholar
  46. 46.
    Atcheson, B., Ihrke, I., Bradley, D., Heidrich, W., Magnor, M., Seidel, H.-P.: Imaging and 3D tomographic reconstruction of time-varying, inhomogeneous refractive index fields. In: Int. Conf. on Computer Graphics and Interactive Techniques, San Diego, California, USA, Article No. 32 (2007)Google Scholar
  47. 47.
    Venkatakrishnan, L., Meier, G.E.A.: Density measurements using the background oriented schlieren technique. Exp. Fluids 37, 237–247 (2004)CrossRefGoogle Scholar
  48. 48.
    Goldhahn, E., Seume, J.: The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp. Fluids 43, 241–249 (2007)CrossRefGoogle Scholar
  49. 49.
    Scholz, U., Kähler, C.J.: PIV analysis of flapping wing aerodynamics. In: 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29 (2006)Google Scholar
  50. 50.
    Ehrenfried, K.: Processing calibration-grid images using Hough transformation. Meas. Sci. Tech. 13, 975–983 (2002)CrossRefGoogle Scholar
  51. 51.
    Hurst, D., Frahnert, H., Schinkel, R., Quix, H., Sant, Y.L.: Benchmark testing of the model deformation measurement systems developed within the European windtunnel association (EWA). In: Conference Proceedings, 1st CEAS European Air and Space Conference, Berlin, September 10–13 (2007)Google Scholar
  52. 52.
    Michaelis, D., Frahnert, H., Stasicki, B.: Accuracy of combined 3d surface deformation measurement and 3D position tracking in a wind tunnel. In: Proc. of 12th International Conference on Experimental Mechanics (ICEM 12), Politecnico di Bari (Italy), August 29 to September 2 (2004)Google Scholar
  53. 53.
    Bansmer, S., Kähler, C., Radespiel, R., Unger, R., Haupt, M., Horst, P.: Flow field measurements on a flexible airfoil for flapping wing propulsion. In: 13th International Symposium on Flow Visualization, Nice, France, July 1–4 (2008)Google Scholar
  54. 54.
    Konrath, R., Klinge, F., Schröder, A., Kompenhans, J., Füllekrug, U.: The projected pattern correlation technique for vibration measurements. In: Proc. of 6th Int. Conf. on Vibration Measurements by Laser Techniques: Advances and Applications, A.I.VE.LA., Ancona, June 22–25 (2004)Google Scholar
  55. 55.
    Estorf, M., Wolf, T., Radespiel, R.: Experimental and numerical investigations on the operation of the Hypersonic Ludwieg Tube Braunschweig. In: 5th European Symposium on Aerothermodynamics for Space Vehicles (2004)Google Scholar
  56. 56.
    Estorf, M.: Image based heating rate calculation from thermographic data considering lateral heat conduction. Heat and Mass Transfer 49, 2545–2556 (2006)CrossRefGoogle Scholar
  57. 57.
    Liu, T., Sullivan, J.P.: Pressure and Temperature Sensitive Paints. Experimental Fluid Mechanics. Springer, Heidelberg (2004)Google Scholar
  58. 58.
    Kautsky, H., Hirsch, H.: Detection of minutest amounts of oxygen by extinction of phosphorescence. Zeitschrift für Anorg, 216–222 (1935)Google Scholar
  59. 59.
    Stern, V.O., Volmer, M.: Uber die Abklingzeit der Fluoreszenz. Phys. Z. 20, 183 (1919)Google Scholar
  60. 60.
    Engler, R., Klein, C., Trings, O.: Pressure sensitive paint systems for pressure distribution measurements in wind tunnels and turbumachines. Meas. Sci. Tech. 11, 1077–1085 (2000)CrossRefGoogle Scholar
  61. 61.
    Klein, C., Engler, R., Henne, U., Sachs, W.: Application of pressure sensitive paint systems for determination of pressure field and calculation of forces and moments of models in a wind tunnel. Exp. Fluids 39, 1114–1432 (2005)CrossRefGoogle Scholar
  62. 62.
    Peterson, J.I., Fitzgerald, V.F.: New Technique of Surface Flow Visualization Based on Oxygen Quenching of Fluorescence. Review of Scientific Instruments 51(5), 133–136 (1980)CrossRefGoogle Scholar
  63. 63.
    Morris, M.J., Donovan, J.K., Kegelmann, J.T., Schwab, S.D., Levy, R.L., Crites, R.C.: Aerodynamic Applications of Pressure Sensitive Paint. AIAA Journal 31(3), 419–421 (1993)CrossRefGoogle Scholar
  64. 64.
    McLachlan, B.G., Bell, J.H.: Pressure Sensitive Paint in Aerodynamic Testing. Exp. Thermal and Fluid Science 10(5), 470–483 (1995)CrossRefGoogle Scholar
  65. 65.
    Sellers, M.E.: Application of pressure sensitive paint for determining aerodynamic loads on a scale of a F-16C. In: 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conf., paper AIAA, pp. 2000–2582 (2000)Google Scholar
  66. 66.
    McLachlan, B.G., et al.: Pressure-Sensitive Paint Measurements on a Supersonic High-Sweep Oblique Wing Model. Journal of Aircraft 32(2), 217–225 (1995)CrossRefGoogle Scholar
  67. 67.
    Liu, T., Torgerson, S., Sullivan, J.P., Johnston, R., Fleeter, S.: Rotor blade pressure measurements in a high speed axial compressor using presure and temperature sensitive paint. AIAA Paper No 97-0162 (1997)Google Scholar
  68. 68.
    Asai, K., Kanda, H., Sullivan, J.P.: Boundary layer transition detection in a cryogenic wind tunnel using luminescent paint. J. Aircraft 34, 34–42 (1997)CrossRefGoogle Scholar
  69. 69.
    Kameda, M., Tabei, T., Nakakita, K., Sakaue, H., Asai, K.: Image measurements of unsteady pressure fluctuations by a pressure-sensitive coating on porous anodized aluminum. Meas. Sci. Technol. 16, 2517–2524 (2005)CrossRefGoogle Scholar
  70. 70.
    Sakamura, Y., Matsumoto, M., Suzuki, T.: High frame-rate imaging of surface pressuredistribution using a porous pressure-sensitive paint. Meas. Sci. Technol. 16, 759–765 (2005)CrossRefGoogle Scholar
  71. 71.
    Kompenhans, J.: Experimental methods for multi-diagnostics of flow fields in wind tunnels. J. of Visualization 10(1), 25–28 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. J. Kähler
    • 1
  1. 1.Institut für StrömungsmechanikBraunschweigGermany

Personalised recommendations